%40تخفیف

Synthesis, Characterization, Thermodynamics and Anticancer Studies of New Tetraaza and Triaza Schiff Base Ligands and Their Metal Complexes of Ni(II), Cu(II), Co(II) and Zn(II)

تعداد249 صفحه در فایل word

Ph.D. Dissertation

In Inorganic Chemistry

 

Synthesis, Characterization, Thermodynamics and Anticancer Studies of New Tetraaza and Triaza

Schiff Base Ligands and Their Metal Complexes of

Ni(II), Cu(II), Co(II) and Zn(II)

Ni(II), Cu(II), Co(II) and Zn(II)

ABSTRACT

 

In this investigation, a set of new fifty Schiff base compounds containing 2-quinolinecarboxaldehyde moiety have been synthesized and characterized.

Ten new tetraaza and triaza Schiff base ligands, N, Nˊ-bis(2-quinolylmethylidene)-1,2-ethanediimine (L1), N, Nˊ-bis(2-quinolylmethylidene)-1,2-propanediimine (L2), N, Nˊ-bis(2-quinolylmethylidene)-1,3-propanediimine (L3), N, Nˊ-bis(2-quinolylmethylidene)-4-methyl-1,2-phenylenediimine (L4), N, Nˊ-bis(2-quinolylmethylidene)-4-methoxy-1,2-phenylenediimine (L5), N, Nˊ-bis(2-quinolylmethylidene)-4-chloro-1,2-phenylenediimine (L6), N, Nˊ-bis(2-quinolylmethylidene)-4-carboxylic-1,2-phenylenediimine (L7), N, Nˊ-bis(2-quinolylmethylidene)-4-nitro-1,2-phenylenediimine (L8), N-(2-quinolylmethylidene)-4-methy-2-aminobenzene (L9) and N-(2-quinolylmethylidene)-4-chloro-2-aminobenzene (L10), have been synthesized by condensation of 2-quinolinecarboxaldehyde with linear and cyclic diamines which present an N4 and N3 coordination spheres. Also, their Ni(II), Cu(II), Co(II) and Zn(II) complexes, have been synthesized. These compounds characterized by molar conductance, elemental analysis, IR, 1H-NMR and UV-Vis spectroscopy. The thermodynamic formation constants of the complexes were measured spectrophotometrically, at constant ionic strength of 0.1 M (NaClO4), at 25˚C in MeOH solvent. The results are as follows:

­ The formation constant trend for tetraaza Schiff base ligands with linear amine as donor and Co(II), Ni(II), Cu(II) and Zn(II) as acceptors changes according to the following order due to the electronic factors:

L2 > L1 > L3

­ The trend of complexation of a given ligand (L1-L3) with the metal ions is as follows:

Co (II) > Ni (II) > Cu (II) > Zn (II(

­ The comparison show that the trend of complex formation toward a given tetraaza ligand with cyclic amine changes according to the following trend due to the electronic factor:

L4 > L5 > L6 > L8 > L7

­ The formation constant for a given tetraaza Schiff bases (L4-L8) toward the M(II), {M(II) = Ni(II), Cu(II) and Zn(II)}, changes according to the following trend:

Zn (II) > Cu (II) > Ni(II)

­ The formation constants for triaza Schiff bases ligands as donor and M(II) as acceptor change according to the following trend due to the electronic factor:

L9 > L10

­ The formation constant for a given ligand (L9, L10) toward Ni(II), Cu(II) and Zn(II) is as follows:

Zn(II) > Cu(II) > Ni(II)

­ Some of the new compounds have anticancer effect, especially CuL1 on Jurkat cell line and CuL1 and ZnL1 on K562 cell line showed good growth inhibitation effect.

 

 

CHAPTER ONE……………………………………………………………………………..1

1.1. General introduction…………………………………………………………..

2

     1.1.1. Inorganic compounds…………………………………………………

2

     1.1.2. Coordination chemistry………………………………………………

4

     1.1.3. Ligand………………………………………………………………………

5

1.2. Schiff bases……………………………………………………………………..

5

     1.2.1. Hugo Schiff: from Germany to Italy………………………………

6

     1.2.2. Schiff base ligands……………………………………………………….

6

…..1.2.3. Schiff base metal complexes…………………………………………

12

     1.2.4. Applications of Schiff base transition metal complexes….

15

     1.2.5. Methods for Characterization of Schiff base Compounds.

17

…..1.2.6. Aza Schiff base compounds………………………………………….

19

1.3. Quinoline…………………………………………………………………………..

25

     1.3.1. Quinoline substituted compounds………………………………….

26

1.4. Chemistry of Metals……………………………………………………………

31

     1.4.1. Transition Metals………………………………………………………….

31

          1.4.1.1 Copper…………………………………………………………………

31

          1.4.1.2. Cobalt…………………………………………………………………

33

          1.4.1.3. Nickel…………………………………………………………………

33

          1.4.1.4. Zinc…………………………………………………………………….

34

1.5. Ligand substitution reaction…………………………………………………

37

1.6. Thermodynamics and inorganic chemistry…………………………….

38

     1.6.1. Formation constant………………………………………………………

38

     1.6.2. Spectrophotometric Methods…………………………………………

39

1.7. The Objective of This Project

40

 

CHAPTER TWO…………………………………………………………………………..42

2.1. Materials……………………………………………………………………………

43

2.2. Physical measurements………………………………………………………..

43

2.3. The synthesis of new tetraaza Schiff base compounds…………….

44

     2.3.1. Synthesis of tetraaza Schiff base ligands (L1-L3)……………..

44

     2.3.2. Synthesis of tetraaza Schiff base ligands (L4-L6)……………..

45

     2.3.3. Synthesis of tetraaza Schiff base ligands (L7, L8)…………….

46

2.4. The synthesis of new triaza Schiff base compounds………………..

46

     2.4.1. The synthesis of new triaza Schiff base ligands……………….

47

2.5. Synthesis of tetraaza Schiff base complexes…………………………..

51

2.6. Synthesis of triaza Schiff base complexes………………………………

53

2.7. Thermodynamic studies……………………………………………………….

61

     2.7.1. The studies of formation constants and free energies of tetraaza Schiff base ligands (L1-L3) consisting of linear bridge with MCl2.4H2O. ( M2+ = Co2+, Cu2+, Ni2+, Zn2+)……………………………..

61

     2.7.2. The studies of formation constants and free energies of tetraaza Schiff base ligands (L4-L8) consisting of cyclic bridge with MCl2.4H2O. ( M2+ = Co2+, Cu2+, Ni2+, Zn2+)………………………..     2.7.3. The studies of formation constants and free energies of triaza Schiff base ligands (L9, L10) consisting of cyclic bridge with MCl2.4H2O. ( M2+ = Cu2+, Ni2+, Zn2+).

63

64

 

CHAPTER THREE……………………………………………………………………….65  

3.1. General informations…………………………………………………………..

66

3.2. The characterization of ligands and complexes……………………….

69

     3.2.1. The molar conductance…………………………………………………

69

     3.2.2. The melting oint………………………………………………………….

71

     3.2.3. The elemental analysis…………………………………………………

72

     3.2.4. The infrared spectroscopy…………………………………………….

80

     3.2.5. The UV-Vis spectroscopy…………………………………………….

91

     3.2.6. The 1H-NMR spectroscopy…………………………………………..

98

3. 3. Thermodynamic aspects and literature review

106

     3.3.1. Thermodynamic studies of the complex formation for the tetraaza Schiff base ligands cotaining linear diamine with Co2+, Cu2+, Ni2+ and Zn2+ ions in methanol……………………………………….

          3.3.1.1. The effect of metal upon complex formation……………

          3.3.1.2. The effect of diamine bridge in ligands upon complex formation……………………………………………………………………….

114

114

115

     3.3.2. Thermodynamic studies of the complex formation for the tetraaza Schiff base ligands cotaining aromatic diamine with Co2+, Cu2+, Ni2+ and Zn2+ ions in methanol…………………………….

116

          3.3.2.1. The electronic effect of the ligands upon complex formation……………………………………………………………………….

116

          3.3.2.2. The metal effect upon the complex formation with tetraaza Schiff base………………………………………………………….

117

     3.3.3. Thermodynamic studies of the complex formation for the triaza Schiff base ligands cotaining aromatic diamine with Cu2+, Ni2+ and Zn2+ ions in methanol……………………………………………..

119

          3.3.3.1. The electronic effect of the ligands upon complex formation……………………………………………………………………….

120

          3.3.3.2. The metal effect upon the complex formation with triaza Schiff base ……………………………………………………………

120

3.4. Biological activities of Schiff base compounds.

121

     3.4.1 Cytotoxicity…………………………………………………………………

139

3.5. Analytical Applications of Schiff base Compounds

141

3.6. Conclusions

150

 

REFERENCES…………………………………………………………………………………153

APPENDIX……………………………………………………………………………………..173

 

LIST OF SCHEMES

SCHEME

PAGE

Scheme 1.1. Synthesise of macrocyclic complexes …………………….

22

Scheme 1.2. Synthesis of ligand……………………………………………….

23

Scheme 2.1. Synthesis of tetraaza Schiff base ligands (L1-L3)………

45

Scheme 2.2. Synthesis of tetraaza Schiff base ligands (L4-L6)……..

45

Scheme 2.3. Synthesis of tetraaza Schiff base ligands (L7, L8)……..

46

Scheme 2.4. Synthesis of new triaza Schiff base ligands (L9, L10)…

47

Scheme 2.5. Synthesis of tetraaza Schiff base complexes……………

53

Scheme 2.6. Synthesis of triaza Schiff base complexes……………….

54

Scheme 3.1. Synthesis of new Schiff base tetraaza ligands………….

67

Scheme 3.2. Synthesis of new Schiff base triaza ligands……………..

68

 

LIST OF TABLES

TABLE                                                                                                     PAGE

Table 3.1. Analytical and physical data of the tetraaza ligands……….

74

Table 3.2. Analytical and physical data of the Ni(II) complexes…….

75

Table 3.3. Analytical and physical data of the Cu(II) complexes…….

76

Table 3.4. Analytical and physical data of the Zn(II) complexes…….

77

Table 3.5. Analytical and physical data of the Co(II) complexes…….

78

Table 3.6. Analytical and physical data of the triaza ligands and their complexes……………………………………………………………….

79

Table 3.7. IR characterization of the tetraaza Schiff base ligands …..

83

Table 3.8. IR characterization of the Ni(II) complexes …………………

84

Table 3.9. IR characterization of the Cu(II) complexes ………………..

85

Table 3.10. IR characterization of the Zn(II) complexes ………………

86

Table 3.11. IR characterization of the Co(II) complexes ………………

87

Table 3.12. IR characterization of the triaza ligands and their complexes …………………………………………………………………….

88

Table 3.13. UV-Vis bands λ max (MeOH/nm) of L1 to L8 and nickel complexes……………………………………………………………………..

96

Table 3.14. UV-Vis bands λ max (MeOH/nm) of copper and zinc complexes……………………………………………………………………..

97

Table 3.15. UV-Vis bands λ max (MeOH/nm) of L9 and L10 and their complexes…………………………………………………………………….

98

Table 3.16. 1H-NMR data of the triaza Schiff bases and their complexes…………………………………………………………………….

102

Table 3.17. 1H-NMR data of the tetraaza Schiff bases and their complexes………………………………………………………………………

103

Table 3.18. The formation constants, log Kf, and the free energies, ∆Gº, for the complexes of the ligands with Ni2+ and Cu2+ ions at 25ºC, in MeOH………………………………………………..

118

Table 3.19. The formation constants, log Kf, and the free energies, ∆Gº, for the complexes of the ligands with Zn2+ and Co2+ ions at 25ºC, in MeOH…………………………………………………….

119

Table 3.20. The formation constants, log Kf, and the free energies, ∆Gº,for the complexes of the triaza ligands with the M2+ ions at 25ºC, in MeOH……………………………………………………………

121

Table 3.21. Cell growth inhibitory activity of compounds in vitro .

140

LIST OF FIGURES

 

FIGURES                                                                                                PAGE

Figure 1.1. Synthesis of Schiff base……………………………………………

7

Figure 1.2. Some examples of Schiff bases………………………………….

8

Figure 1.3. Chemical structure of fluorescent Schiff bases…………….

9

Figure 1.4. N2O2 Schiff base compounds…………………………………….

10

Figure 1.5. Macrocyclic Schiff base compounds………………………….

11

Figure 1.6. Binding modes of small molecules with DNA…………….

17

Figure 1.7. Chemical structures of Schiff bases with silver ion discrimination ability……………………………………………………

20

Figure 1.8. Chemical structure of MoO2pypr catalys……………………

20

Figure 1.9. Mono and bis benzimidazoles derivatives…………………..

21

Figure 1.10. Schiff base tetraazamacrocyclic ligand……………………

23

Figure 1.11. Macrocyclic Schiff base for stabilizing of various oxidation states……………………………………………………………..

24

Figure 1.12. L1 and L2 ligands……………………………………………………

25

Figure 1.13. Tetraaza ligands…………………………………………………….

27

Figure 1.14. On–off–on’ fluorescent indicators……………………………

29

Figure 1.15. Chemical structure of the ligand 2-quinoline-N-(2`-methylthiophenyl) methyleneimine wity N,N,S donor atoms

28

Figure 1.16. Chemical structure of Schiff base ligands by changing pendant arms………………………………………………………………..

29

Figure 1.17. Transition metal catalysts……………………………………….

30

Figure 1.18. Bis-bidentate Schiff base ligands……………………………..

30

FIGURES

PAGE

Figure 2.1. N, Nˊ-bis(2-quinolylmethylidene)-1,2-ethanediimine…..

48

Figure 2.2. N, Nˊ-bis(2-quinolylmethylidene)-1,2-propanediimine…

48

Figure 2.3. N, Nˊ-bis(2-quinolylmethylidene)-1,3-propanediimine…

49

Figure 2.4. N, Nˊ-bis(2-quinolylmethylidene)-4-methy-1, 2-phenylenediimine………………………………………………………….

49

Figure 2.5. N, Nˊ-bis(2-quinolylmethylidene)-4-methoxy-1, 2-phenylenediimine………………………………………………………….

50

Figure 2.6. N, Nˊ-bis(2-quinolylmethylidene)-4-chloro-1, 2-phenylenediimine………………………………………………………….

50

Figure 2.7. N, Nˊ-bis(2-quinolylmethylidene)-4-carboxylic-1, 2-phenylenediimine………………………………………………………….

51

Figure 2.8. N, Nˊ-bis(2-quinolylmethylidene)-4-nitro-1, 2-phenylenediimine………………………………………………………….

51

Figure 2.9. N-(2-quinolylmethylidene)-4-methy-2-aminobenzene….

52

Figure 2.10. N-(2-quinolylmethylidene)-4-chloro-2-aminobenzene..

52

Figure 2.11. The variation of the electronic spectra of L1(in MeOH) titrated with various concentration of Zn(II)chloride at 25ºC in I =0.1 M (NaClO4)…………………………………………………….

62

Figure 2.12. UV-Vis spectra of the ligand L1 (1), the synthesized ZnL1 (2) in MeOH and the end point of the titration of the ligand with Zn 2+ (3)……………………………………………………..

62

Figure. 2.13. The variation of the electronic spectra of L6(in MeOH ) titrated with various concentration of Cu (II) chloride at 25ºC in I = 0.1 M (NaClO4)……………………………………………

63

Figure 2.14. Spectrophotometric titration of L9 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

64

FIGURES

PAGE

Figure 3.1. The structure of tetraaza complexes……………………………

68

Figure 3.2. The structure of triaza complexes………………………………

69

Figure 3.3. IR spectrum of L2…………………………………………………….

89

Figure 3.4. IR spectrum of NiL2Cl2…………………………………………….

89

Figure 3.5. IR spectrum of L5…………………………………………………….

90

Figure 3.6. IR spectrum of ZnL5Cl2……………………………………………

90

Figure 3.7. Types of electronic transition energy diagram…………….

92

Figure.3.8. Examples of transitions and resulting λmax…………………..

93

Figure 3.9. The effect of increasing conjugation on the absorption ..

94

Figure 3.10. Proton NMR Chemical Shifts for Common………………

100

Figure 3.11. 1H-NMR spectrum of L8…………………………………………

104

Figure 3.12. 1H-NMR spectrum of NiL8……………………………………..

105

Figure 3.13. Chemical structure of the ligand H2L for inhibiting the growth………………………………………………………………………….

124

Figure 3.14. Chemical structure of the metal complexes of 7-chloro-4-(o-hydroxybenzilidenehydrazo)quinoline with antimicrobial activities M= Co(II), Fe(II), Ni(II)……………….

125

Figure 3.15. Molecular structures of Schiff base ligands and their copper (II) complexes for catalytically cleavage of DNA…..

126

Figure 3.16. Chemical structure of the isatin- diimine copper (II) complexes…………………………………………………………………….

127

Figure 3.17. Chemical structures of quinoline-2-carboxaldehyde and copper (II) complex…………………………………………………

128

Figure3.18. Chemical structure of LMW-chitosan zinc complex…..

129

Figure 3.19. Chemical structures of ligands with antitumor activities……………………………………………………………………….

130

Figure 3.20. Chemical structures of the Schiff base ligand and its platinum complex………………………………………………………….

130

Figure 3.21. Chemical structure of the Taurine Schiff base ligand and its copper complex…………………………………………………..

131

Figure 3.22. Chemical structure of three Schiff bases (PDH, HHP and PHP) cosidered for cytotoxic and anticancer activities..

132

Figure 3.23. Synthesis of Azomethine derivatives………………………..

132

Figure 3.24. Chemical structure of Schiff base ligand derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine………………………………………………………….

133

Figure 3.25. Chemical structure of trimethoprim (2,4-diamino-5-(3`,4`,5`-trimethoxybenzyl) pyrimidine)…………………………..

134

Figure 3.26. Chemical structure of the Cu(TAAB)2+ copper complex use as an anticancer agent………………………………….

135

Figure 3.27. Chemical structure of triaza ligand with pyridine moiety………………………………………………………………………….

136

Figure 3.28. Chemical structure of ligand prepared from salicylaldehyde and o-amino benzoic acid………………………..

136

Figure 3.29. Representative chemical structures of macrocyclic Mn(III) complexs………………………………………………………….

137

Figure 3.30. Structure of mono, bis-2,2-(arylidineaminophenyl) benzimidazoles ……………………………………………………….

138

Figure 3.31. Chemical structure of complexes where, M = Co(II), Ni(II), Cu(II), Zn(II) X = Cl, NO3, CH3COO……………………….

139

Figure 3.32. Chemical structure of the Schiff base complex for mercury electrode………………………………………………………….

142

Figure 3.33. Chemical structure of imines (3, 4), salicylaldehyde and ethyleneamine………………………………………………………………..

143

Figure 3.34. Chemical structures N-(2-methylphenyl)salicyaldimine, N-(2-hydroxyphenyl) salicyaldimine, N-(2-methoxyphenyl)- salicyaldimine and N-(2-nitrophenyl)salicyaldimine·HCl…………

145

Figure 3.35. Chemical structure of salen Schiff bases, A1 and A2 with inhibitor properties………………………………………………………………

146

Figure 3.36. Chemical structure of Sensor with selectivity to Zn2+

146

Figure 3.37. Chemical structure of the Schiff bases by enhancing the selectivity………………………………………………………………………

147

Figure 3.38. Chemical structures of two suitable ionophores used in construction of the Cr3+ and Cu2+selective membrane sensors……

148

Figure 3.39. Chemical Structure of macrocyclic tetraaza as selective electrode……………………………………………………………………….

149

Figure 3.40. Chemical structure of N, N`-bis(2-nitrobenzyl) ethylendiimine L1 and its complexes as an electrode………….

150

Figure 3.41. IR spectrum of L1…………………………………………………..

174

Figure 3.42. 1H-NMR spectrum of L1…………………………………………

174

Figure 3.43. IR spectrum of NiL1……………………………………………….

175

Figure 3.44. Spectrophotometric titration of L1 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

175

Figure 3.45. IR spectrum of ZnL1……………………………………………….

176

Figure 3.46. 1H-NMR spectrum of ZnL1……………………………………..

176

Figure 3.47. Spectrophotometric titration of L1 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

177

Figure 3.48. Spectrophotometric titration of L1 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

177

Figure 3.49. Spectrophotometric titration of L1 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

178

Figure 3.50. IR spectrum of L2…………………………………………………..

178

Figure 3.51. 1H-NMR spectrum of L2…………………………………………

179

Figure 3.52. IR spectrum of NiL2……………………………………………….

179

Figure 3.53. Spectrophotometric titration of L2 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

180

Figure 3.54. IR spectrum of ZnL2……………………………………………….

180

Figure 3.55. 1H-NMR spectrum of ZnL2……………………………………..

181

Figure 3.56. Spectrophotometric titration of L2 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

181

Figure 3.57. Spectrophotometric titration of L2 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

182

Figure 3.58. IR spectrum of L3…………………………………………………..

182

Figure 3.59. 1H-NMR spectrum of L3…………………………………………

183

Figure 3.60. IR spectrum of NiL3……………………………………………….

183

Figure 3.61. Spectrophotometric titration of L3 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

184

Figure 3.62. IR spectrum of ZnL3……………………………………………….

184

Figure 3.63. 1H-NMR spectrum of ZnL3……………………………………..

185

Figure 3.64. Spectrophotometric titration of L3 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

185

Figure 3.65. IR spectrum of CuL3………………………………………………

186

Figure 3.66. . Spectrophotometric titration of L3 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

186

Figure 3.67. Spectrophotometric titration of L3 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

187

Figure 3.68. IR spectrum of L4…………………………………………………..

187

Figure 3.69. 1H-NMR spectrum of L4 ………………………………………..

188

Figure 3.70. IR spectrum of NiL4……………………………………………….

188

Figure 3.71. Spectrophotometric titration of L4 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

189

Figure 3.72. IR spectrum of ZnL4……………………………………………….

189

Figure 3.73. 1HNMR spectrum of ZnL4………………………………………

190

Figure 3.74. Spectrophotometric titration of L4 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

190

Figure 3.75. Spectrophotometric titration of L4 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

191

Figure 3.76. IR spectrum of CuL4………………………………………………

191

Figure 3.77. Spectrophotometric titration of L4 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

192

Figure 3.78. IR spectrum of L5…………………………………………………..

192

Figure 3.79. 1H-NMR spectrum of L5…………………………………………

193

Figure 3.80. IR spectrum of NiL5……………………………………………….

193

Figure 3.81. Spectrophotometric titration of L5 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

194

Figure 3.82. IR spectrum of ZnL5……………………………………………….

194

Figure 3.83. 1HNMR spectrum of ZnL5………………………………………

195

Figure 3.84 Spectrophotometric titration of L5 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

195

Figure 3.85. IR spectrum of CuL5………………………………………………

196

Figure 3.86. Spectrophotometric titration of L5 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

196

Figure 3.87. IR spectrum of L6…………………………………………………..

197

Figure 3.88. 1H-NMR spectrum of L6…………………………………………

197

Figure 3.89. IR spectrum of NiL6……………………………………………….

198

Figure 3.90. Spectrophotometric titration of L6 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

198

Figure 3.91. IR spectrum of ZnL6……………………………………………….

199

Figure 3.92. 1H-NMR spectrum of ZnL6……………………………………..

199

Figure 3.93. Spectrophotometric titration of L6 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

200

Figure 3.94. Spectrophotometric titration of L6 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

200

Figure 3.95. IR spectrum of CuL6………………………………………………

201

Figure 3.96. Spectrophotometric titration of L6 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………….

201

Figure 3.97. IR spectrum of L7…………………………………………………..

202

Figure 3.98. 1H-NMR spectrum of L7…………………………………………

202

Figure 3.99. IR spectrum of NiL7……………………………………………….

203

Figure 3.100. Spectrophotometric titration of L7 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

203

Figure 3.101. IR spectrum of ZnL7……………………………………………..

204

Figure 3.102. 1H-NMR spectrum of ZnL7……………………………………

204

Figure 3.103. Spectrophotometric titration of L7 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

205

Figure 3.104. Spectrophotometric titration of L7 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

205

Figure 3.105. IR spectrum of CuL7…………………………………………….

206

Figure 3.106. Spectrophotometric titration of L7 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

206

Figure 3.107. IR spectrum of L8…………………………………………………

207

Figure 3.108. 1H-NMR spectrum of L8……………………………………….

207

Figure 3.109. IR spectrum of NiL8……………………………………………..

208

Figure 3.110. 1H-NMR spectrum of NiL8……………………………………

208

Figure 3.111. Spectrophotometric titration of L8 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

209

Figure 3.112. Spectrophotometric titration of L8 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

209

Figure 3.113. IR spectrum of ZnL8……………………………………………..

210

Figure 3.114. 1H-NMR spectrum of ZnL8……………………………………

210

Figure 3.115. Spectrophotometric titration of L8 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

211

Figure 3.116. IR spectrum of CuL8…………………………………………….

211

Figure 3.117. Spectrophotometric titration of L8 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

212

Figure 3.118. IR spectrum of L9…………………………………………………

212

Figure 3.119. 1H-NMR spectrum of L9……………………………………….

213

Figure 3.120. Spectrophotometric titration of L9 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

213

Figure 3.121. IR spectrum of NiL9……………………………………………..

214

Figure 3.122. Spectrophotometric titration of L9 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

214

Figure 3.123. IR spectrum of ZnL9……………………………………………..

215

Figure 3.124. 1H-NMR spectrum of ZnL9……………………………………

215

Figure 3.125. Spectrophotometric titration of L9 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C………………………………………..

216

Figure 3.126. IR spectrum of CuL9…………………………………………….

216

Figure 3.127. Spectrophotometric titration of L9 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

217

Figure 3.128. IR spectrum of L10………………………………………………..

217

Figure 3.129. 1H-NMR spectrum of L10………………………………………

218

Figure 3.130. Spectrophotometric titration of L10 with CoCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

218

Figure 3.131. IR spectrum of NiL10…………………………………………….

219

Figure 3.132. Spectrophotometric titration of L10 with NiCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

219

Figure 3.133. IR spectrum of ZnL10……………………………………………

220

Figure 3.134. 1H-NMR spectrum of ZnL10…………………………………..

220

Figure 3.135. Spectrophotometric titration of L10 with ZnCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

221

Figure 3.136. IR spectrum of CuL10……………………………………………

221

Figure 3.137. Spectrophotometric titration of L10 with CuCl2.4H2O in MeOH at I = 0.1 M at 25 ͦ C…………………………………………

222

قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo