%40تخفیف

Viscosity Measurement of Morpholinium-Based Ionic Liquids

تعداد97 صفحه در فایل word

                                            M.Sc. Thesis in Physical Chemistry

Viscosity Measurement of Morpholinium-Based Ionic Liquids

In this thesis, ten aprotic ionic liquids were synthesized using alkylmorpholinium cation, with methyl and ethyl alkyl group, and with anions formate, acetate, propionate, hexanoate, and decanoate. Their densities and viscosities were measured experimentally.

Densities of these ionic liquids are decreased linearly with increasing temperature. Also the densities of these ILs are decreased with the length of alkyl chain of the cations and anions. Viscosities decrease with increasing temperature and increase with increasing the chain length. In the same way, viscosities and densities were measured in the temperature range of 298 to 348K. The viscosity measurement was performed under moisture free atmosphere during the measurement, using the freeze drying technique.

Different theories were used to fit the measured temperature dependent viscosity of the ILs. The results show that the temperature dependence of viscosity can be described more precisely by the Vogel-Fulcher-Tammann (VFT) model equation than with the Arrhenius equation. Also the measured viscosities follow accurately the equation  developed recently in our group. The relation with the surface tension was studied too. Also, the effect of free volume, determined by the measured density,  on the viscosity was investigated.

Ionic liquid – viscosity- density -temperature dependent of viscosity- chain length.

CONTENT                                                                                                             PAGE

Chapter One: Introduction

  • Ionic Liquids………………………………………………………………………………..1

            1.1.1 Properties of  Ionic Liquids…………………………………………….…..2

            1.2 Transport Properties ………………………………………………………..….4

1.1.2 Transport Properties of  Ionic Liquids……………………………………………………………………4

1.3 Objective……………………………………….….………………………………………6

 

Chapter Two: Literature Review

2.1 Ionic Liquids History………..……………………………….……………………….7

2.2  Protic Ionic Liquids………………………………………………………………………………..9

2.3  Hydrophilicity and Hydrophobicity……………………………………………………..11

Chapter Three: Viscosity and Its Temperature Dependence

3.1 General Concepts…………………………………………………………………………………15

3.1.1 Shear Stress…………………………………………………………………………15

3.1.2 Shear Viscosity and Bulk Viscosity……………………………………………16               3.1.3 Newtonian and Non – Newtonian Fluids………..……………………….16

3.1.4  Molecular Explanation of Viscosity…………………………………………………17

3.1.5 Units of Viscosity. ………………..………………………………………….17

 

CONTENT                                                                                                             PAGE

3.2 The Effect of Temperature on the Liquid Viscosity…………………………..….18

3.3 The New Equation for Temperature Dependence of Viscosity…………………………19

3.4 Conventional Viscometery………..………………………………………………20

            3.4.1 Capillary Viscometers………………………………………………………………..20

 3.4.2  Mechanics of Flow in Capillaries…………………….…………………21

            3.4.3  Glass Capillary…………………………………………………………….24

3.5  Operation……………………………………………………………………………………25

Chapter Four: Method and Experiment

4.1 Synthesis of Ionic Liquids…………..……………………………………………………..27

            4.1.1 Materials…………………………………………………………….…..28

4.2 Synthesis of MethylMorpholinium Formate……………………………..28

4.2 Density Measurement………………………………………………………………41

4.3 Measurement of the Viscosity Coefficient……………….…………………………..41

Chapter Five: Results and Discussion

5.1 Preparation of  Dried Samples..……………………………………………………45

5.2 Density ………………………………..………………………………………………..45

5.3 Viscosity………..…………………………………………………………………53

5.4 Studies of Temperature Dependence of Viscosity ……………………………….56

5.5 Relation between Surface Tension and Viscosity…………………………………………73

Conclusions……………………………………………………………………………83

References…………………………………………………….……………………….84

LIST OF TABLE

TABLE                                                                                                                            PAGE

Table 5.1 The Measured Values of Density for Methylmorpholinium-Based Ionic Liquids.. ………………………………………………………………………………………………51

Table 5.2 The Measured Values of Density for Ethylmorpholinium-Based Ionic Liquids…. ………………………………………………………………………………………………51

Table 5.3 The Measured Values of Viscosity for Methylmorpholinium-Based Ionic Liquids………………………………………………………………………………….…..55

Table 5.4 The Measured Values of Viscosity for Ethyl Morpholinium-Based Ionic Liquids………………………………………………………………………………………55

 

Table 5.5  Parameter of VFT Equation. ………………………………………………………67

Table 5.6 Parameters of  VFT and Arrhenius Equation …………………………..…….….73

Table 5.7 Parameter of  the Fluiditdy Equation…………………………………………….73

LIST OF FIGURES

FIGURE                                                                                                                         PAGE

Figure 2.1 Water Content at Saturation  pressure at Ambient Temperature ………..…..…..12

Figure 2.2 The Extent of Hygroscopicity: (Δ) Corresponds to [omim][NO3], (∗) to [omim]Cl, (○) to [bmim][BF4] and (□)to [bmim][PF6]………………………………..…………….…..13

Figure.3.1 Comparison of  Deformation of Solids and Liquids Under Application of a Shear

Stress………………………………………………………………………………….………16

Figure 3.2 Structure of  Water and Effect of Heating on Short-Range Order in Liquid….…18

Figure 3.3 Force Balance on a Column of Fluid Flowing Through a Capillary………….…22

Figure 3.4 Parabolic Velocity Profile………………………………………………………………………23

Figure 3.5 Ostwald Viscometer………………………………………………………………………………….25

Figure 4.1 1HNMR and 13CNMR for [Mmorph][For]……………………………………………………31

Figure 4.2 1HNMR and 13CNMR for [Emorph][For] ……………………………………… .32

Figure 4.3 1HNMR and 13CNMR for [Mmorph][Ace] …………………………………………33

Figure 4.4  1HNMR and 13CNMR for [Mmorph][Ace]……………………………………….34

Figure 4.5  1HNMR and 13CNMR for [Mmorph][Pro]……………………………………………35

Figure 4.6 1HNMR and 13CNMR for[Emorph][Pro] …………………….………………….36

Figure 4.7  1HNMR and 13CNMR for [Mmorph][Hex]……………………………………..37

Figure 4.8  1HNMR and 13CNMR for [Emorph][Hex]………………………………………38

Figure 4.9 1HNMR and 13CNMR for [Mmorph][Dec]………………………..……………..39

]……….…………………..…………40 Figur4.10  1HNMR AND 13CNMR for [Emorph][Dec

Figure 4.11 Cannon – Fenske Viscometer……………………………………………………………………42

 

 

FIGURE                                                                                                                           PAGE

Figure 4.12 Experimental Setup for Moving Water Content of the Liquid Sample Before The

 Measurements……………………………………………………………………………….43

 

Figure 5.1 Density of [Mmorph][For] vs. Temperature…………………………………….46

Figure 5.2 Density of [Emorph][For] vs. Temperature……….………………………………46

Figure 5.3 Density of [Mmorph][Ace] vs. Temperature ………………………………………..47

Figure 5.4 Density of [Emorph][Ace] vs. Temperature………………………………………47

 

Figure 5.5 Density of [Mmorph][Pro] vs. Temperature. ……………………………………48

Figure 5.6 Density of [Emorph][Pro] vs. Temperature …….……………………………………48

Figure 5.7 Density of [Mmorph][Hex] vs. Temperature. ………….……………………………..49

Figure 5.8 Density of [Emorph][Hex] vs. Temperature. ……………………………………..49

Figure 5.9 Density of [Mmorph][Dec] vs. Temperature……………..…………………………….50

Figure 5.10 Density of [Emorph][Dec] vs. Temperature…………………………………………………50

Figure 5.11 Density of Methylmorpholinium-based Ionic Liquids vs.Temperature…………52

Figure 5.12 Density of Ethylmorpholinium-based Ionic Liquids vs. Temperature………….53

Figure 5.13 The Viscosity of [Mmorph][For] Have Been Reported in the Literature……….54

Figure 5.14 Viscosity of [Mmorph][For] vs. Temperature……………….………………………56

Figure 5.15 Viscosity of [Emorph][For] vs. Temperature…………………………………….56

.

Figure 5.16 Viscosity of [Mmorph][Ace] vs. Temperature………………………………………57

Figure 5.17 Viscosity of [Emorph][Ace] vs. Temperature……………………………………….57

Figure 5.18 Viscosity of [Mmorph][Pro] vs. Temperature………………………………………58

Figure 5.19 Viscosity of [Emorph][Pro] vs. Temperature…………………….……………..58

Figure 5.20  Viscosity of [Mmorph][Hex] vs. Temperature…………………………….……59

Figure 5.21 Viscosity of [Emorph][Hex] vs. temperature……………………………………59

Figure 5.22 Viscosity of [Mmorph][Dec] vs. Temperature…….…………………………….60

FIGURE                                                                                                                    PAGE

Figure 5.23 Viscosity of [Emorph][Dec] vs. Temperature…………………………………..60

Figure 5.24 Viscosity of Methylmorpholinium -Based Ionic Liquids vs. Temperature……..61

Figure 5.25 Viscosity of Ethylmorpholinium- Based Ionic Liquids vs. Temperature………..61

Figure 5.26 η-0.3888 vs. Temperature [Mmorh][Dec]………………………………………….62

Figure 5.27 η-0.3053 vs. Temperature [Emorh][Dec]…………………………………………..62

Figure 5.28 η-0.3406 vs. Temperature [Emorh][Hex]………………………………………….63

Figure 5.29 η-0.306 vs. Temperature[Mmorh][Hex]……………………………………………… 63

Figure 5.30 η-0.3144 vs. Temperature [Emorh][Pro]……………………………………………64

Figure 5.31 η-0.3134 vs. Temperature [Mmorh][Pro]…………………………………………..64

Figure 5.32 η-0.3196 vs. Temperature [Mmorh][Ace]……………………………………………..65

Figure 5.33 η-0.3196 vs. Temperature [Emorh][Ace]………………………………………………65

Figure 5.34 η-0.3786vs. Temperature [Emorh][For]……………………………………………66

Figure 5.35η-0.3781vs. Temperature [Mmorh][For]………………………………………………66

Figure 5.36 The VFT Plot of [Emorph][Dec] ……………………………………………….68

Figure 5.37 The VFT Plot of [Mmorph][Dec ]…..………………………………………….68

Figure 5.38 The VFT Plot of [Emorph][Hex]…………………………………………….….69

Figure 5.39The VFT Plot of [Mmorph][Hex]………………………………………….…….69

Figure 5.40 The VFT Plot of [Emorph][Pro]…………………………………………….…. 70

Figure 5.41 The VFT Plot of [Mmorph][Pro]……………………………………………..…70

Figure 5.42 The VFT Plot of [Emorph][Ace]…………………………………………….….71

Figure 5.43 The VFT Plot of [Mmorph][Ace]………………………………………….……71

Figure 5.44 The VFT Plot of [Emorph][For]…………………………………………….….72

Figure 5.45 The VFT Plot of [Mmorph][For]…………………………………………….…72

FIGURE                                                                                                                           PAGE Figure 5.46 ln γ vs. η-0.3781for [Mmorph][For] …………………………………………….…74

Figure 5.47 ln γ vs. η-03786. for [Emorph][For]………………………………………….……74

Figure 5.48 ln γ vs. η -03196. for [Mmorph][Ace] ………………………………………………75

Figure 5.49 ln γ vs. η-0.3608. for [Emorph][Ace]………………………………………………75

Figure 5.50 ln γ vs. η-0.3134 for [Mmorph][Pro]………………………………………………76

Figure 5.51 ln γ vs. η-0.3144 for [Emorph][Pro]…….…………………………………………..76

Figure 5.52 ln γ vs. η0.3060 for [Mmorph][Hex]……… ………………………………….……77

Figure 5.53 ln γ vs. η-0.3406 for [Emorph][Hex]… …………………………………………….77

Figure 5.54 ln γ vs. η0.3053 for [Mmorph][Dec]…… ………………………………………….78

Figure 5.55  ln γ vs. η-0.3888 for [Emorph][Dec]……………… ……………………………..78

Figure 5.56  Plot of Intercept (lnC) as a Function of the Alkyl Chain Length, n. for [Mmorph][For], [Mmorph][Ace], [Mmorph][Pro], [Mmorph][Hex] and [Mmorph][Dec]…79

 

Figure 5.57  Plot of Intercept (lnC) as a Function of the Alkyl Chain Length, n. for [Emorph][For], [Emorph][Ace], [Emorph][Pro], [Emorph][Hex] and [Emorph][Dec] …….79

 

Figure 5.58  Plot of Density (ρ) as a Function of the Alkyl Chain Length, n. for [Mmorph][For], [Mmorph][Ace], [Mmorph][Pro], [Mmorph][Hex] and [Mmorph][Dec].…81

Figure 5.59  Plot of Density (ρ) as a Function of the Alkyl Chain Length, n. for [Emorph][For], [Emorph][Ace], [Emorph][Pro], [Emorph][Hex] and [Emorph][Dec]………81

Figure 5.60  Plot of Viscosity (η) as a Function of the Alkyl Chain Length, n. for [Mmorph][For], [Mmorph][Ace], [Mmorph][Pro], [Mmorph][Hex] and [Mmorph][Dec].…82

Figure 5.61  Plot of Viscosity (η) as a Function of the Alkyl Chain Length, n. for [Emorph][For], [Emorph][Ace], [Emorph][Pro], [Emorph][Hex] and [Emorph][Dec] …….82

 

 

LIST OF SCHEME

SCHEME                                                                                                                       PAGE

 

Scheme 1.1 Types of Cations and Anions for Ionic Liquids…………………………………2

Scheme 2.1 PIL Formation through Proton Transfer from a Brønsted Acid (A) to a Brønsted

Base (B)………………………………………………………………………………………10

 Scheme 2.2 Representative Cations ………………………………………………………..10

Scheme 2.3 Representative Anions………………………………………………………….12

Scheme 2.4 Some Possible Anions……………………………………………………..……12

Scheme 4.1 Synthesis of Morpholinium-Based Ionic Liquids……………………………….27

.

.

 

Symbols and Abbreviations

 

 

η            Viscosity

T           Temperature

ρ           Density

t            Time

D          Diffusion Coefficient

k           Thermal Conductivity Coefficient

s           Shear Stress

To        Glass Transition Temperature

V          Volume

ν            Velocity

R           Gas Constant

قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo