%40تخفیف

THEORETICAL STUDY OF H2O2 ADSORPTION ON Fe- AND N-DOPED (TiO2)5 , (TiO2)6 NANOCLUSTERS

تعداد100صفحه در فایل word

M.Sc. THESIS IN
PHYSICAL CHEMISTRY

THEORETICAL STUDY OF H2O2 ADSORPTION ON Fe- AND N-DOPED (TiO2)5 , (TiO2)6 NANOCLUSTERS

The effect of transition metal (Fe) and nonmetal (N) dopant on the electronic properties of (TiO2)nn=5,6 nanoclusters have been investigated by using B3LYP level of theory with DZVP2 basis set.The calculated formation energies show that doping in general makes the clusters less stable. Calculations of total densityof states (TDOS) have performed in order to determine the type of semiconductors.The p-type and n-type semiconductors are created by Fe-doping and N-doping ofinvestigated clusters, respectively. Then the  interactions between doped nanoclusters and hydrogen peroxide (H2O2) have been investigated. All possible configurations are considered and the minimum energy structures are found. Atoms in molecules analysis (AIM) confirm the formation of Ti-O and O-H bonds in the systems. Binding distances and topological parameters at bond critical points correlated well with adsorption energies. Moreover, natural bond orbital analysis (NBO) imply that charge transfer force play important role in the formation of complexes.

Key words: Fe- and N-doped (TiO2)nnanoclusters, TDOS, NBO, AIM.

 

TABLE OF CONTENTS

 

Content

Page

Chapter 1: Introduction

1

1-1) Nanomaterials

2

1-2) TiO2 Compounds

3

1-3) Doping

4

   1-3-1) Cation-Doped TiO2

6

   1-3-2) Anion-Doped TiO2

7

1-4) Objectives of the Present Thesis

8

Chapter 2:Literature Review

10

Chapter 3:Theoretical Background

15

3-1) Density Functional Theory (DFT)

16

3-2) Hybrid Functionals

17

   3-2-1) B3LYP Methods

17

3-3) Basis Sets

18

   3-3-1) Double Zeta Basis Set

18

   3-3-2) Polarization Basis Functions

19

   3-3-3) Basis Set Superposition Errors (BSSEs)

20

3-4) Theory of Atoms in Molecules (AIM)

22

3-5) Natural Bond Orbitals (NBO)

25

3-6) Density of State

26

3-7) Computational Details of the Present Research

27

Chapter 4:Results and Discussion

29

4-1) (TiO2)n n=5,6 Nanoclusters

30

4-1-1) Structural Optimization

30

   4-1-2) Formation Energy

36

   4-1-3) Electronic Structures of Doped (TiO2)n n=5,6

38

4-2) Interaction of (TiO2)n n=5,6 Nanoclusters with Hydrogen Peroxide

47

   4-2-1) Geometrical Structures

47

   4-2-2) Interaction Energies of the Complexes

55

   4-2-3) Atoms in Molecules Topological Parameters of the Complexes

58

   4-2-4) Natural Bond Orbital (NBO) Analysis

62

4-3) Conclusions

65

References

67

Appendix

83

Abstract and Title page in Persian

 

LIST OF TABLES

 

Content

Page

Table 4.1 Structural data of doped (TiO2)5 nanoclusters;

            spin  multiplicity, dipole moment and average bond lengths (dav)

33

Table 4.2 Structural data of doped (TiO2)6 nanoclusters;

spin multiplicity, dipole moment and Average bond lengths (dav)

33

Table 4.3Formation energy of (TiO2)n n=5,6 for different position

of dopant atoms. ( eV)

37

Table 4.4 HOMO and LUMO energies of pure and doped nanoclusters, HOMO-LUMO energy gap (Eg), Fermi energy (Efermi)

40

Table 4.5 Bond length between titanium and oxygen of H2O2 (dTi-O), oxygen of cluster and hydrogen of H2O2 (dO-H), oxygen and oxygen in H2O2 (dO-O), bond angles of  oxygen-hydrogen-oxygen (∠OHO), and dihedral angle of H2O2 in most stable complexes as well as isolate H2O2

54

Table 4.6 Adsorption energies (DEad) as well as the

counterpoise corrected interaction energies (DEcorr) and the BSSE

values for most stable complexes (all values are in kcal mol-1 )

56

Table 4.7 Calculated adsorption energies for N-, Fe-doped and undoped (TiO2)n n=5,6 nanoclusters. (kcal mol-1)

57

Table 4.8Topological parameters at BCP of O…M (M= Fe,Ti) and H…X (X= O,N ). Parameters: ρ ( r ),electron density; Ñ2 ρ ( r ), Laplacian; H ( r ), electron energy density; and – , ratio of potential to kinetic electron energy density. (au)

59

Table 4.9Correlation between electron density and Ti…O and H…O bonds which has created in adsorption site

60

 

Table 4.10 Charge transfer (CT, e)  and NBO second-order interaction energy (E2, kcal mol-1)  for the corresponding donor-acceptor orbital interactions of H2O2 adsorption on N-doped (TiO2)n  n=5,6 nanoclusters

64

Table 4.11 Charge transfer (CT, e)  and NBO second-order interaction energy (E2, kcal mol-1)  for the corresponding donor-acceptor orbital interactions of H2O2 adsorption on Fe-doped (TiO2)n  n=5,6 nanoclusters

64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES

Content

Page

Fig4-1) Different position for doping in pure (TiO2)n n=5,6nano-

clusters. The letters b, t, and f denote bridge, terminal and

              front sites, respectively

32

Fig 4-2) Optimized geometries of Fe- and N-doped (TiO2)5 nanoclusters. The blue atom belong to nitrogen, green for iron, grey for titanium and red for oxygen

34

Fig 4-3) Optimized geometries of Fe- and N-doped (TiO2)6 nanoclusters. The blue atom belong to nitrogen, green for iron, grey for titanium and red for oxygen

35

Fig 4-4)Variation of formation energy forpure and doped (TiO2)n n=5,6 nanoclusters

37

Fig 4-5) The schematic digram of the mechanism of the N- and Fe-doped (TiO2)n n=5,6 nanoclusters. e and h refer to electron and hole, respectively

40

Fig 4-6)HOMO visualization (left) and total density of states (right) of (TiO2)n n=5,6 nanostructures. The dashed line represents the position of the Fermi level. The DOS of undoped cluster,N-dopedandFe-doped are shown by Black, blue and red curves, respectively

44

Fig 4-7)Natural charge distribution of the undoped and Fe-

               doped (TiO2)n  n=5,6 nanoclusters

46

Fig 4-8)Most stable optimized geometries for the interaction of Fe-doped (TiO2)5  and pure nanoclusters with H2O2

50

Fig 4-9)Most stable optimized geometries for the interaction of N-doped (TiO2)5  and pure nanoclusters with H2O2

51

Fig 4.10)Most stable optimized geometries for the interaction of Fe-doped (TiO2)6  and pure nanoclusters with H2O2

52

Fig 4.11)Most stable optimized geometries for the interaction of

N-doped (TiO2)6  and pure nanoclusters with H2O2

53

Fig 4.12)Relationship of the electron density with Ti…O and H…O bond distance

60

 

 

قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo