%40تخفیف

Synthesis and Investigation of New Organoplatinum Complexes and Kinetic Isotope Effect in Organoplatinum(II) Oxidative Addition Reactions

 

Ph. D. DISSERTATION IN

INORGANIC CHEMISTRY

 

 

Synthesis and Investigation of New Organoplatinum Complexes

and

Kinetic Isotope Effect in Organoplatinum(II)

Oxidative Addition Reactions

 

ABSTRACT

 

In part I, the secondary α-deuterium kinetic isotope effects (KIEs), (kH/kD)α, have been determined, at different temperatures and in solvents having different polarities, for reaction of PhCH2Br/PhCD2Br with the dimethylplatinum(II) complexes [PtMe2(NN)], in which the bidentate NN ligand is bpy (= 2,2′-bipyridine) or bu2bpy (= 4,4′-di-tert-butyl-2,2′-bipyridine). The values obtained for the secondary α-deuterium KIEs in acetone solution are close to 1 and may be normal or inverse, but much larger values are found for the reactions in benzene. An explanation is presented on the basis of solvent dependence of the degree of looseness of the transition state in the SN2 mechanism.

In part II, the substitution reactions of the labile SMe2 ligand in the cycloplatinated(II) complexes [PtR(ppy)(SMe2)], 1, in which ppy = 2-phenylpyridinate and R = Me, 1A, or p-MeC6H4, 1B, by pyridine-2-thione, C5H5SN, were studied. When each of the complexes 1 was treated with 1 equiv C5H5SN, existing as a mixture of tautomers thiol (N^SH) and thione (HN^S), a mixture containing the S-bound thiol complex [PtR(ppy)(η1S-S^NH)] (R = Me, 2A, or R = p-MeC6H4, 2B) and the dimeric complex [Pt(ppy)(N^S)]2, 3, having two bridging deprotonated pyridine-2-thione (N^S) ligands, was observed along with the evolution of free R-H. This mixture was finally led to pure complex 3 after 3 days. Pure samples of the complexes 2A and 3 were obtained from the above mentioned 2A+3 mixtures by using flash chromatography on silica gel. Kinetics of the reactions were investigated by UV-vis spectroscopy (complexes 1 have a MLCT band in the visible region which was used to easily follow the reactions) and 1H-NMR spectroscopy. On the basis of the results, a mechanism was proposed for the related reactions.

Key words: Oxidative Addition, Kinetic, Isotope Effects, pyridine-2-thione.

 

 

 

LIST OF CONTENTS

Content                                                                                                                 Page

Chapter One:Introduction and Literature Review

  1.1. General Survey on Organometallic Chemistry. 1

  1.2. Organoplatinum Complexes. 3

  1.3. Fundamental Organometallic Reactions. 3

     1.3.1. Oxidative Addition: General Considerations. 4

        1.3.1.1. Mechanisms of Oxidative Addition. 5

           1.3.1.1.1. Three-center Concerted Additions. 5

           1.3.1.1.2. Nucleophilic (SN2) Reactions. 6

           1.3.1.1.3. Radical Mechanisms. 7

           1.3.1.1.4. Ionic Mechanisms. 8

           1.3.1.1.5. Sigma-bond Metathesis Mechanisms. 9

  1.4. Kinetic Isotope Effect 10

     1.4.1. Basis of KIE.. 11

     1.4.2. Origin of Isotope Effects. 12

     1.4.3. Magnitude of the Observed KIEs. 14

        1.4.3.1. Primary Isotope Effects. 15

        1.4.3.2. Secondary Isotope Effects. 16

           1.4.3.2.1. α-Secondary Kinetic Isotope Effects. 16

           1.4.3.2.2. β-Secondary Kinetic Isotope Effects. 21

     1.4.4. Equilibrium Isotope Effects. 22

     1.4.5. Solvent Isotope Effects. 23

  1.5. Substitution Reactions. 24

  1.6. Hemilabile Ligands. 26

  1.7. Complexes of Hetrocyclic Thione Donors. 27

     1.7.1. General Aspects of Heterocyclic Thione Donors. 28

        1.7.1.1. Heterocyclic Thionates as Monodentate Ligands. 30

        1.7.1.2. Heterocyclic Thionates as Chelating Ligands. 32

        1.7.1.3. Heterocyclic Thionates as Bridging Ligands. 34

     1.7.2. Binuclear Complexes Containing Heteroyclic Thionates. 37

Chapter Two: Experimental

  2.1. Source of Chemicals. 42

  2.2. Techniques and Methods. 42

     2.2.1. Inert Atmosphere Techniques. 42

     2.2.2. 1H-NMR Spectroscopy. 42

     2.2.3. 13C{1H}-NMR Spectroscopy. 43

     2.2.4. Microanalysis. 43

     2.2.5. IR Spectroscopy. 43

     2.2.6. UV-Visible Spectroscopy. 43

     2.2.7. Determination of Melting Points. 43

     2.2.8. Preparation of Dry Ether 44

  2.3. Preparation of Starting Compounds. 44

     2.3.1. Preparation of K2PtCl6 44

        2.3.1.1. Preparation of K2PtCl6 from Laboratory Platinum Residual 44

        2.3.1.2. Preparation of K2PtCl6 from Pure Platinum Metal 45

     2.3.2. Preparation of K2PtCl4 45

     2.3.3. Preparation of cis/trans-[PtCl2(SMe2)2] 46

     2.3.4. Preparation of [Me2Pt(µ-SMe2)2PtMe2] 46

     2.3.5. Preparation of para-Tolyllithium Solution. 47

     2.3.6. Preparation of cis-[Pt(p-MeC6H4)2(SMe2)2] 47

     2.3.7. Preparation of cis-[Pt(Cl)2(dmso)2] 48

  2.4. Synthesis of Platinum(II) Complexes Containing Aromatic Nitrogen-Donor Ligands  48

     2.4.1. Preparation of [PtMe2(bpy)], 1a. 48

     2.4.2. Preparation of [PtMe2(bu2bpy)], 1b. 49

     2.4.3. Preparation of [PtMe2(Me2bpy)], 1c. 49

  2.5. Synthesis of Platinum(IV) Complexes Containing Aromatic Nitrogen-Donor Ligands  50

     2.5.1. Preparation of trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 50

     2.5.2. Preparation of trans-[PtBr(CD2Ph)Me2(bpy)], 2a*. 50

     2.5.3. Preparation of trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b. 51

     2.5.4. Preparation of trans-[PtBr(CD2Ph)Me2(bu2bpy)], 2b*. 51

     2.5.5. Preparation of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c. 52

     2.5.6. Preparation of trans-[PtBr(CD2Ph)Me2(Me2bpy)], 2c*. 52

  2.6. Kinetic Study. 53

  2.7. KIEs by Competition Experiments. 53

  2.8. Synthesis of Platinum(II) Complexes Containing Cyclometalated  2-Phenylpyridine, (ppy), Ligand. 54

     2.8.1. Preparation of [PtMe(ppy)(SMe2)], 1A.. 54

     2.8.2. Preparation of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B.. 54

     2.8.3. Preparation of [Pt(dmso)(ppy)(Cl)], 1C.. 55

  2.9. Synthesis of Platinum(II) Complexes Containing Pyridine-2-thione (S^NH)  and Cyclometalated 2-Phenylpyridine, (ppy), Ligands. 55

     2.9.1. Reaction of [PtMe(ppy)(SMe2)], 1A, with C5H5SN.. 55

        2.9.1.1. [PtMe(ppy)(η1S-S^NH)], 2A.. 56

        2.9.1.2. [Pt(ppy)(N^S)]2, 3. 56

     2.9.2. Reaction of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B, with C5H5SN.. 57

     2.9.3. Direct Preparation of [Pt(ppy)(N^S)]2, 3. 58

     2.9.4. Monitoring the Reaction of 1A with C5H5SN by 1H-NMR Spectroscopy. 58

     2.9.5. Monitoring the Reaction of 1B with C5H5SN by 1H-NMR Spectroscopy. 59

     2.9.6. Kinetic Study (Part II) 59

     2.9.7. Theoretical Methods. 59

     2.9.8. X-Ray Crystal Structure Determination. 59

Chapter Three:Results and Discussion

     3.1.1. General Remarks about NMR Spectroscopy of Organoplatinum Complexes. 62

     3.1.2. Part I:  Secondary Kinetic Isotope Effects in Oxidative Addition of Benzyl 65

     3.1.3. Synthesis and Characterization of Precursor Complexes. 65

        3.1.3.1. cis/trans– [PtCl2(SMe2)2] 65

        3.1.3.1.1. 1H-NMR spectrum of cis/trans-[PtCl2(SMe2)2] 66

        3.1.3.2. [Me2Pt(µ-SMe2)2PtMe2] 68

           3.1.3.2.1.1H-NMR spectrum of [Me2Pt(µ-SMe2)2PtMe2] 68

        3.1.3.3. [PtMe2(bpy)], 1a. 70

           3.1.3.3.1.1H-NMR spectrum of [PtMe2(bpy)], 1a. 70

        3.1.3.4. [PtMe2(bu2bpy)], 1b. 72

           3.1.3.4.1.1H-NMR spectrum of [PtMe2(bu2bpy)], 1b. 72

        3.1.3.5. [PtMe2(Me2bpy)], 1c. 74

           3.1.3.5.1.1H-NMR spectrum of [PtMe2(Me2bpy)], 1c. 74

     3.1.4. Synthesis and Characterization of Platinum(IV) Complexes Containing Aromatic Nitrogen-Donor Ligands. 76

        3.1.4.1. trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 76

           3.1.4.1.2. 1H-NMR Spectrum of trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 77

           3.1.4.1.3. 13C{1H}-NMR Spectrum of trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 79

           3.1.4.1.4. 13C{1H}-DEPT-NMR Spectrum of trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 81

        3.1.4.2. [PtBr(CD2Ph)Me2(bpy)], 2a*. 82

           3.1.4.2.1. 1H- NMR Spectrum of trans-[PtBr(CD2Ph)Me2(bpy)], 2a*. 82

        3.1.4.3. trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b. 84

           3.1.4.3.1. Elemental Analysis of  trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b. 84

           3.1.4.3.2. 1H-NMR Spectrum of [PtBr(CH2Ph)Me2(bu2bpy)], 2b. 85

           3.1.4.3.3. 13C{1H}-NMR Spectrum of [PtBr(CH2Ph)Me2(bu2bpy)], 2b. 87

        3.1.4.4. trans-[PtBr(CD2Ph)Me2(bu2bpy)], 2b*. 89

           3.1.4.4.1. 1H- NMR Spectrum of trans-[PtBr(CD2Ph)Me2(bu2bpy)], 2b*. 89

        3.1.4.5. trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c. 90

           3.1.4.5.1 Elemental Analysis of  trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c. 90

           3.1.4.5.2. 1H-NMR spectrum of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c. 91

           3.1.4.5.3. 13C{1H}-NMR Spectrum of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c. 93

           3.1.4.5.4. 13C{1H}-DEPT-NMR Spectrum of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c  93

        3.1.4.6. trans-[PtBr(CD2Ph)Me2(Me2bpy)], 2c*. 93

     3.1.5. Kinetic and Mechanistic Studies of Oxidative Addition Reaction of Benzyl 96

        3.1.5.1. General Remarks. 96

        3.1.5.2. Second Order Reactions. 96

     3.1.6. KIEs by Competition Experiments. 103

     3.1.7. DFT calculations. 108

     3.1.8. Conclusions. 112

  3.2. Part II: C-H Reductive Elimination During the Reaction of Cycloplatinated(II) Complexes with Pyridine-2-thione: Kinetic Follow up. 114

     3.2.1. Synthesis of Precursor Complexes. 115

        3.2.1.1. cis-[Pt(p-MeC6H4)2(SMe2)2] 115

           3.2.1.1.1. 1H-NMR of cis-[Pt(p-MeC6H4)2(SMe2)2] 115

        3.2.1.2. [PtCl2(dmso)2] 117

     3.2.2. Synthesis of Platinum(II) Complexes Containing Cyclometalated 2-Phenylpyridine Ligand  119

        3.2.2.1. [Pt(Me)(ppy)(SMe2)], 1A.. 119

           3.2.2.1.1. 1H-NMR of [Pt(Me)(ppy)(SMe2)], 1A.. 119

        3.2.2.2. [Pt(p-MeC6H4)(ppy)(SMe2)], 1B.. 121

           3.2.2.2.1. 1H-NMR of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B.. 121

        3.2.2.3. [Pt(ppy)Cl(dmso)], 1C.. 123

     3.2.3. Synthesis of Platinum(II) Complexes Containing Pyridine-2-thione and Cyclometalated 2-Phenylpyridine Ligands. 125

        3.2.3.1. Reaction of [PtMe(ppy)(SMe2)], 1A, with C5H5SN.. 125

        3.2.3.2. [PtMe(ppy)(η1S-S^NH)], 2A.. 126

           3.2.3.2.2. 1H-NMR Spectrum of [PtMe(ppy)(η1S-S^NH)], 2A.. 127

           3.2.3.2.3. IR Spectrum of [PtMe(ppy)(η1S-S^NH)], 2A.. 129

        3.2.3.3. [Pt(ppy)(N^S)]2, 3. 130

           3.2.3.3.1. Elemental Analysis of [Pt(ppy)(N^S)]2, 3. 130

           3.2.3.3.2. 1H -NMR Spectrum of [Pt(ppy)(N^S)]2, 3. 130

           3.2.3.3.3. Crystal Structure of [Pt(ppy)(N^S)]2, 3. 131

        3.2.3.4. Reaction of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B, with C5H5SN.. 133

           3.2.3.4.1. 1H-NMR Spectrum of the Mixture of [Pt(p-MeC6H4)(ppy)(η1S-S^NH)], 2B and [Pt(ppy)(N^S)]2, 3. 133

        3.2.3.5. Direct Preparation of [Pt(ppy)(N^S)]2, 3. 136

           3.2.3.5.1. 1H-NMR Spectrum of [Pt(ppy)(N^S)]2, 3. 136

     3.2.4. Kinetics and Mechanism of the Reactions. 138

        3.2.4.1. Kinetic studies by UV-vis Spectroscopy. 139

     3.2.5. Monitoring the Reactions of [PtMe(ppy)(SMe2)], 1A with Pyridine-2-thione by 1H-NMR Spectroscopy. 145

     3.2.6. Monitoring the Reactions of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B with Pyridine-2-thione by 1H-NMR Spectroscopy. 148

     3.2.7.  Geometry Optimizations. 150

        3.2.7.1. Energy Profile for the Product Formation. 152

References. 157

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURE

Content                                                                                                                   Page

Figure 1-1. Morse potential diagram for C-H and C-D bonds. 13

Figure 1-2. The reaction coordinate diagram for a typical primary H/D KIE. 14

Figure 1-3. Some examples of primary kinetic isotope effects. 15

Figure 1-4: The reaction coordinate diagram for the secondary α-deuterium KIE. (C-H/C-D bonds are not being broken during the process, but the carbon atoms experience an sp3 to sp2 hybridization change.)58 17

Figure 1-5. The reaction coordinate diagram for the secondary α-deuterium KIE. (C-H/C-D bonds are not being broken during the process, but the carbon atoms experience an sp2 to sp3 hybridization change.)58 18

Figure 1-6. The C-H(D) out-of-plane bending vibrations in the substrate and in the SN1 and SN2 transition states. 19

Figure1-7. The relationship between the looseness (the nucleophile-leaving group distance) of the SN2 transition state and the magnitude of the secondary α-deuterium KIE as determined by the Cα-H(D) out-of-plane bending vibtrations in the transition state. 20

Figure 1-8. Some examples of α-secondary kinetic isotope effects.63-64 21

Figure 1-9. Some examples of β-secondary kinetic isotope effects. 21

Figure 1-10. The reactions coordinate diagrams for typical EIEs. 23

Figure 1-11. Heterocyclic thionates that most frequently involved as bridging  ligands. 35

Figure 1-12. (a) µ2-S(η2-S), (b) µ2-S,N(η1-S; η1-N), (c) µ2-S,N(η2-S; η1-N), (d) µ3-S,N(η1-S; η1-N), (d) µ3-S,N(η2-S; η1-N), (e) µ4-S,N(η3-S; η1-N), (f) µ3(η3-S). 36

Figure 1-13. Conversion between µ2-S,N (a) and  µ2-S(η2-S) (b) bridging  modes, Among  binuclear heterocyclic thionate containing complexes. 37

Figure 3-1. 1H-NMR spectrum (250 MHz) of a mixture of cis/trans-[PtCl2(SMe2)2] in CDCl3. 67

Figure 3-2. 1H-NMR spectrum (250 MHz) of [Me2Pt(µ-SMe2)2PtMe2] in CDCl3. 69

Figure 3-3. 1H-NMR spectrum (250 MHz) of [PtMe2(bpy)], 1a,  in CDCl3. 71

Figure 3-4.  1H-NMR spectrum (250 MHz) of [PtMe2(bu2bpy)], 1b, in CDCl3. 73

Figure 3-5.  1H-NMR spectrum (250 MHz) of [PtMe2(Me2bpy)],1c, in CDCl3. 75

Figure 3-6. 1H-NMR spectrum (400 MHz) of trans-[PtBr(CH2Ph)Me2(bpy)], 2a, in CDCl3. 78

Figure 3-7.  Expansion of aromatic region between 6.0- 8.8 ppm of the 1H-NMR spectrum (400 MHz) of trans-[PtBr(CH2Ph)Me2(bpy)], 2a, in CDCl3. 79

Figure 3-8. 13C{1H}-NMR spectrum (201 MHz) of trans-[PtBr(CH2Ph)Me2(bpy)], 2a, in CDCl3. 80

Figure 3-9. 13C{1H}-DEPT-NMR spectrum (201 MHz) of  trans-[PtBr(CH2Ph)Me2(bpy)], 2a, in CDCl3. 81

Figure 3-10. 1H-NMR spectrum (250 MHz) of [PtBr(CD2Ph)Me2(bpy)], 2a*, in CDCl3. 83

Figure 3-11. 1H-NMR spectrum (400 MHz) of trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b, in CDCl3. 86

Figure 3-12. Expansion of aromatic region between 6.0- 8.8 ppm of the 1H-NMR spectrum (400 MHz) of trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b, in CDCl3. 87

Figure 3-13. 13C{H}-NMR spectrum (201 MHz) of trans-[PtBr(CH2Ph)Me2(bu2bpy)], 2b, in CDCl3. 88

Figure 3-14. 1H-NMR spectrum (400 MHz) of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c, in CDCl3. 92

Figure 3-15: 13C{1H}-NMR spectrum (202 MHz) of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c, in CDCl3. 94

Figure 3-16: 13C{1H}-DEPT-NMR spectrum (202 MHz) of trans-[PtBr(CH2Ph)Me2(Me2bpy)], 2c, in CDCl3. 95

Figure 3-17. Changes in the UV-visible spectrum during the reaction of [PtMe2(bpy)], 1a (3 mL of 3×10-4 M solution), with PhCH2Br, under second-order 1:1 stoichiometric conditions, in acetone at 25°C: (a) initial spectrum (before adding PhCH2Br); (b) spectrum at t = 0; successive spectra recorded at intervals of 30 s. 99

Figure 3-18. Changes in the UV-visible spectrum during the reaction of [PtMe2(bpy)], 1a (3 mL of 3×10-4 M solution), with PhCH2Br, under second-order 1:1 stoichiometric conditions, in benzene at 25°C: (a) initial spectrum (before adding PhCH2Br); (b) spectrum at t = 0; successive spectra recorded at intervals of 1 min. 99

Figure 3-19. Absorbance-time curves for the reaction of [PtMe2(bpy)] with PhCH2Br, in 1:1 stoichiometric condition, in acetone at different temperatures 15, 20, 25, 30, 35 ºC (increases reading downward) . 100

Figure 3-20. Absorbance-time curves for the reaction of [PtMe2(bu2bpy)] with PhCH2Br, in 1:1 stoichiometric condition, in acetone at different temperatures 15, 20, 25, 30ºC (increases reading downward) . 100

Figure 3-21. Eyring plots for the reactions with PhCH2Br in acetone: (a) for complex 1a; (b) for complex 1b. 101

Figure 3-22. Eyring plots for the reactions with PhCD2Br in acetone: (a) for complex 1a; (b) for complex 1b. 101

Figure 3-23. 1H-NMR spectra in CDCl3 of (A) trans-[PtBr(CH2Ph)Me2(bpy)], 2a, (B) mixture of trans-[PtBr(CH2Ph)Me2(bpy)], 2a, and trans-[PtBr(CD2Ph)Me2(bpy)], 2a*, (C) trans-[PtBr(CD2Ph)Me2(bpy)], 2a*. 105

Figure 3-24.  Proposed initiation of the SN2 oxidative addition. 108

Figure 3-25.  Calculated structures and relative energies (kJ mol-1) for product 2a, intermediate A1 and transition states B1 and C1, arising from the reaction of 1a + PhCH2Br + acetone (E = 0) in acetone solution. 110

Figure 3-26. 1H-NMR spectrum (250 MHz) of cis-[Pt(p-MeC6H4)2(SMe2)2] in CDCl3. 116

Figure 3-27. 1H-NMR spectrum (400 MHz) of cis-[PtCl2(dmso)2] in acetone-d6. 118

Figure 3-28. 1H-NMR spectrum (250MHz), of [Pt(Me)(ppy)(SMe2)], 1A, in CD2Cl2. 120

Figure 3-29. 1H-NMR spectrum of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B,  in CD2Cl2. 122

Figure 3-30. 1H-NMR (250 MHz) spectrum of [Pt(ppy)Cl(dmso)], 1C, in CDCl3. 124

Figure 3-31. 1H-NMR spectrum (250 MHz) of [PtMe(ppy)(η1S-S^NH)], 2A,  in CDCl3. 128

Figure 3-33. Crystal structure of complex 3 from crystallization of the product obtained from mixing of complex 1A and C5H5SN. The H atoms are omitted for clarity. 131

Figure 3-34. 1H-NMR spectrum (250 MHz), of [Pt(ppy)(N^S)]2, 3, in CDCl3. 132

Figure 3-35. 1H-NMR spectrum of the mixture of [Pt(p-MeC6H4)(ppy)(η1S-S^NH)], 2B, and   [Pt(ppy)(N^S)]2, 3, in CDCl3. 135

Figure 3-36. 1H-NMR spectrum (400 MHz), of [Pt(ppy)(N^S)]2,in DMSO-d6. 137

Figure 3-37. Absorbance-wave lenght curve for complex 3. 140

Figure 3-38. The changes in the UV-vis spectrum during the reaction of [Pt(p-MeC6H4)(ppy)(SMe2)], 1B, with  pyridine-2-thione  (each 3 × 10-4 M) in CH2Cl2 at 25 °C: (a) pure 1B; (b) pure pyridine-2-thione; (c) spectrum at t = 0; successive spectra recorded at intervals of 1 min. 141

Figure 3-39.The changes in the UV-vis spectrum during the reaction of [Pt(Me)(ppy)(SMe2)], 1A, with  2-mercaptopyridine. (a) pure 1A; (b) spectrum at = 0; successive spectra recorded at intervals of 1 min. 141

Figure 3-40. Absorbance (at 500 nm)-time curves for the reaction of [Pt(p- MeC6H4)(ppy)(SMe2)], 1B, with pyridine-2-thione, using 1:1 stoichiometry, in CH2Cl2 at temperatures of 15, 20, 25, 30 and 35 °C (temperature increases reading upward). 142

Figure 3-41. Absorbance (at 500 nm)-time curves for the reaction of [Pt(Me)(ppy)(SMe2)], 1A, with pyridine-2-thione, using 1:1 stoichiometry, in CH2Cl2 at temperatures of 10, 20, 25, 30 and 35 °C (temperature increases reading upward). 142

Figure 3-42. Eyring plots for reductive elimination of R-H and formation of dimer 3 from (a) complex 2A’ (R = Me) and (b) 2B’ (R = p-MeC6H4) in CH2Cl2. 143

Table 3-13. Rate constantsa and activation parameters for R-H reductive elimination from the complexes 2A’ or 2B’ to give dimer 3 in CH2Cl2 solution. 144

Figure 3-43. 1H-NMR spectra of reaction of complex 1A, with pyridine-2-thione at 27 °C in C6D6; (a) pure 1A, (b) immediately after addition of pyridine-2-thione to 1A, (c) 5 min after addition, (d) 10 min after addition,  (e) 15 min after addition, (f) 20 min after addition, (g) 30 min after addition, (h) 60 min after addition, (i) 90 min after addition, (j) 120 min after addition, (k) 150 min after addition, (l) 180 min after addition, (m) 300 min after addition , (n) 330 min after addition, (o) 24 h after addition . Signals with satellites are assigned to complex 1A, 2A’ and complex 2A. 147

Figure 3-44. 1H-NMR spectra (aliphatic region) of reaction of complex 1B, with pyridine-2-thione at 27 °C in CD2Cl2; (a) pure 1B, (b) immediately after addition of pyridine-2-thione to 1B, (c) 20 min after addition, (d) 60 min after addition,  (e) 120 min after addition, (f) 5h after addition,. 149

Figure 3-45. DFT optimized structures of complexes 2A, 2B and 3. The H atoms (except H of S^NH ligand) are omitted for clarity. 150

Figure 3-46. Calculated structures and relative energies of species involved in the reaction of complex 1A with pyridine-2-thione. 153

Figure 3-47. Calculated structures and relative energies of species involved in the reaction of complex 1B with pyridine-2-thione. 154

 

 

 

LIST OF TABLE

Content                                                                                                                   Page

Table 2-1. λmax’s of  [PtMe2(NN)] complexes in acetone and benzene. 53

Table 2-2. Crystal data and structure refinement for [Pt(ppy)(N^S)]2, 3. 60

Table 3-1: Elemental Analysis of trans-[PtBr(CH2Ph)Me2(bpy)], 2a. 76

Table 3-2. Elemental Analysis of trans-[PtBr(CH2Ph)Me2(bpy)], 2b. 84

Table  3-3. Elemental Analysis of trans [PtBr(CH2Ph)Me2(Me2bpy)], 2c. 90

Table 3-4. λmax’s of  [PtMe2(NN)] complexes in acetone or benzene. 98

Table 3-5. Rate constants, activation parameters, and kinetic α-deuterium isotope effects for the reaction of complex [PtMe2(bpy)], 1a, with C7H7 Br /C7H5D2Br in acetone or benzene. 102

Table 3-6. Rate constants, activation parameters, and kinetic α-deuterium isotope effects for the reaction of complex [PtMe2(bu2bpy)], 2b, with C7H7 Br /C7H5D2Br in acetone or benzene. 103

Table 3-7. Kinetic α-deuterium isotope effects from Uv-vis spectroscopy and kinetic α-deuterium isotope effects from NMR product analysis, for the reaction of complexes [PtMe2(bpy)] (1a) or [PtMe2(bu2bpy)] (1b) with PhCH2Br/PhCD2Br in acetone or benzene. 104

Table 3-8.  Secondary α-deuterium kinetic isotope effects for the reaction of complex [PtMe2(bpy)], 1a,  in acetone or benzene. 106

Table 3-9.  Secondary α-deuterium kinetic ksotope effects for nucleophilic substitution reactions of benzyl derivatives. 107

Table 3-10.  Calculated Hirshfeld atomic charges and selected distances (Å) for the compounds of Scheme 3-4. 112

Table  3-11: Elemental Analysis of  [PtMe(ppy)(η1S-S^NH)], 2A. 126

Figure 3-32. IR Spectrum of [PtMe(ppy)(η1S-S^NH)], 2A. 129

Table  3-12. Elemental Analysis of [Pt(ppy)(N^S)]2, 3. 130

Table 3-14. Selected calculated bond distance (Å) and angle () for complexes 2, and 3. 152


قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo