%40تخفیف

Preparation of Novel Nano-Sized Ion Imprinted Polymers for the Selective Determination of Some Transition and Alkali Metal Ions & Synthesis, Characterizations and Applications of Nano-Sized ZnS Quantum Dots: Interaction Study with BSA, Determination of Hazardous Anions, and Removal of Pollutant Dyes

     تعداد276 صفحه در فایل word                                        

Ph.D Thesis

Preparation of Novel Nano-Sized Ion Imprinted Polymers for the Selective Determination of Some Transition and Alkali Metal Ions

&

Synthesis, Characterizations and Applications of Nano-Sized ZnS Quantum Dots: Interaction Study with BSA, Determination of Hazardous Anions, and Removal of Pollutant Dyes

Part A

New Zn2+ ion-imprinted polymeric nanobeads were prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligands, Morin (3,5,7,20,40-pentahydroxyflavone), in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as porogen solvent in the presence of ethyleneglycol-dimethacrylate (EGDMA) as cross-linking, and methacrylic acid (MAA) as monomer, via thermally polymerization method, using 2,2-azobisisobutyronitrile (AIBN) as initiator. The synthesized ion imprinted polymers with an average size of 70–90 nm in diameter, were characterized using FTIR, SEM, and thermal analysis techniques. Optimum pH range for rebinding of Zn2+ ion on the IIP (7.5) and equilibrium binding time were studied. Maximum adsorbent capacity and enrichment factor for Zn2+ ion were obtained as 45.3 mg.g-1 and 150, respectively, using flame atomic absorption spectrometry (FAAS).

Novel ion imprinted polymeric nanoparticles were synthesized via precipitation polymerization for recognition and determination of Hg2+ ions in aqueous solutions. The  Hg-IIP nanoparticles were prepared by copolymerizing of mercury chloride and 5,10,15,20-tetrakis (3-hydroxyphenyl)-porphyrin, as a suitable chelating ligand in 25 mL of acetonitrile-dimethylsulfoxide (4:1; v/v) mixture as porogen solvent, in the presence of EGDMA, MAA, and AIBN. The adsorbed mercury was easily eluted by 5.0 mL 1.0 M HNO3 and mercury contents of the leach samples have been determined by cold vapor atomic adsorption spectrometry (CVAAS). The results demonstrated that the Hg(II) imprinted copolymers had a large adsorption capacity of 248.9 mg.g-1 for dry copolymer. The relative standard deviation and detection limit (3σ) of the method were evaluated as 2.2% and 0.15 µg.L-1, respectively. The prepared mercury imprinted copolymers can be used at least 30 times without any significant decrease in the polymer binding affinities.

In addition, the prepared Hg2+ ion imprinted polymer was used as solid phase sorbent for preconcentration and on-line photometric determination of Hg2+ ions by using flow injection technique. The experimental parameters including pH of sample solution, preconcentration and elution times, nature, volume, concentration of eluent, flow rate of loading and leaching solutions were investigated and optimized. The Hg2+ ions retained by the polymeric nanoparticles were eluted quickly with 5.0 mL of HNO3 1.0 M. The amounts of adsorbed Hg2+ ions on the IIPs were determined photometrically at 485 nm using alcoholic diphenylthiocarbazone as a suitable reagent after elution in the setupped flow injection system. The relative standard deviation and detection limit (3σ) of the method for eight replicate at optimum pH of 7.0, were evaluated as 4.2% and 0.0036 ng.mL-1, respectively.

The first application of the ion imprinting technology was reported for the determination of potassium ion by precipitation polymerization method. Ion imprinted polymeric (IIP) nanoparticles were prepared by using dicyclohexyl-18C6 (DC18C6) as a selective ligand for K+ ion, in the AN/DMSO (3:1; v/v) mixture as porogen solvent in the presence of EGDMA, MAA, and AIBN. The SEM results showed IIP nanoparticles of 60–90 nm in diameter and slightly irregular in shape. The maximum adsorption capacity and preconcentration factor of the ion-imprinted polymers (IIPs) for K+ ion were 33.5 mg.g-1, 60, and at pH 9.0, respectively. The relative standard deviation (RSD %) and detection limit (DL) (3σ) of the method were evaluated as 1.7% and 3.8 ng.mL-1, respectively. The relative selectivity coefficient values of the imprinted adsorbent for, K+/Li+, K+/Na+, K+/Rb+, K+/Cs+, K+/Mg2+, K+/Ca2+, and K+/Sr2+ were found to be as 24.8, 24.0, 20.4, 17.4, 19.4, 14.6 and 18.1 times greater than those for non-imprinted matrix, respectively.

Also, the first research on the preparation of a cesium ion imprinted polymer was carried out by a precipitation polymerization strategy for the uptake of cesium ion from aqueous solutions. Ion imprinted polymeric (IIP) nanoparticles were prepared by using dibenzo-24-crown-8 (DB24C8) as a Cs+ ion selective crown ether. The scanning electron micrographs showed the preparation of nanoparticles of 50–80 nm. The prepared cesium IIP nanoparticles showed highly selective recognition of Cs+ ion, with rapid adsorption and desorption processes. The RSD % and DL (3σ) of the method were evaluated as 0.9% and 0.7 ng.mL-1, respectively. The relative selectivity coefficient values of the imprinted adsorbent for Cs+ ion related to Li+,  Na+, K+, Rb+, Ag+, NH4+, Mg2+, Ca2+, and Sr2+ were obtained to be 43.1, 37.5, 47.3, 23.5, 25.3, 23.4, 32.9, 41.2 and 23.2 times greater than non-imprinted matrix, respectively.

 

Part B

Ultra small zinc sulfide and iron doped zinc sulfide quantum dots (QDs) was synthesized in aqueous media, in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe3+ ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1 nm, using scanning tunneling microscopy (STM) technique. The X-ray diffraction (XRD) analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 17±2 Å. Finally, the interaction of the prepared QDs with bovine serum albumin was investigated at pH of 7.2, by using UV-Vis absorption and fluorescence spectroscopic methods at different temperature. In the steady-state fluorescence studies, the interaction parameters including binding constants (Ka), number of binding sites (n), quenching constants (K’SV), and bimolecular quenching rate constant (kq) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.

A novel, rapid and simple method for selective and sensitive determination of hazardous cyanide ion in aqueous solution was developed. The zinc sulfide (ZnS) nanoparticles exhibited a strong fluorescent emission at about 421 nm. Luminescent surface-modified QDs, with particle size below 5 nm, have been applied for spectrofluorometric determination of cyanide ions. Under the optimum conditions, the decrease in fluorescence intensity of ZnS QDs was linearly proportional to the cyanide ion concentration in the range of 2.4×10−6 to 2.6×10−5 M with a detection limit of 1.7×10-7 M. The relative standard deviation for six replicate measurements was obtained to be 2.6%. There is no significant wavelength shift on the fluorescence-quenched signals in the presence of cyanide ion at the pH of 11. In addition, the designed fluorescent sensor revealed remarkable selectivity for cyanide ion over other anions such as Cl, Br, F, I, IO3, ClO4, BrO3, CO32−, NO2, NO3, SO42−, S2O42−, C2O42−, SCN, N3, citrate, and tartarate. Negligible influences were observed on cyanide detection by the coexistence of other anions.

          A simple spectrofluorimetric method for the selective and sensitive determination of sulfide ion in aqueous solution was suggested. The ultra small zinc sulfide doped with manganese (ZnS:Mn) QDs were synthesized by using a safe and efficient procedure based on the co-precipitation of nanoparticles in aqueous solution in the presence of 2-mercaptoethanol (ME) at room temperature. The ZnS:Mn nanoparticles have exhibited two strong fluorescent emission at about 423.9 and 594.0 nm. Under the optimum conditions, the decreased fluorescence intensity of ZnS:Mn QDs is linearly proportional to the sulfide  ion concentration in the range of 1.2×10-6 to 2.6×10-5 M with a detection limit of 2.3×10-7 M. The RSD for five replicate measurements (for 5.0×10-6 M of sulfide solution) was obtained 3.4%. There was no significant wavelength shift on the fluorescence-quenched signals in the presence of sulfide ion at the pH of 10. In addition, the designed fluorescent sensor possesses remarkable selectivity for sulfide over other anions.

          In the last part, pure ZnS and iron doped ZnS quantum dots capped with 2-mercaptoethanol were used for decolorization of three color pollutants. Comparative photocatalytic degradations of the cationic dyes, including malachite green (MG) methyl violet (MV) and victoria blue 4R (VB), were performed to study the photoactivity behaviors of the prepared QDs, under UV light irradiation. The effect of operational parameters including; dosage of nanophotocatalyst, irradiation time, and pH of sample solutions on the decolorization efficiency of the organic dyes were studied. It was founded that the maximum degradation of the dyes was obtained at 80 mg.L-1 of photocatacyst as an optimum value for the dosage of it in alkaline pH under UV light intensity of 40 W.m-2. Also, the reproducibility of nanoparticles behavior, as photocatalyst showed at least three cycles of photodegradation processes. Finally, kinetic and degradation mechanisms of the dyes were discussed.

 

 

 

 

TABLE OF CONTENTS                                                                                                PAGE

PART A

Imprinted Polymeric Materials

Section I

Introduction and Literature Review

1.1. Introduction                                                                                                                     3

1.2. What is molecular imprinting                                                                                           4

1.3. Molecular imprinting technology                                                                         5

1.4. Category of imprinted polymers                                                                                      7

1.4.1. Covalent approach                                                                                                   9

1.4.2. Non-covalent approach                                                                                            10

1.5. Ion imprinted polymers                                                                                                    11

1.6. Effecting of special target recognition                                                                            12

1.7. Optimization of the polymer structure                                                                             13

1.7.1. Template                                                                                                                   13

1.7.2. Monomers                                                                                                                14

1.7.3. Cross-linkers                                                                                                 15

1.7.4. Porogenic solvents                                                                                                   17

1.7.5. Initiators                                                                                                                   18

1.8. Preparation methods                                                                                                        20

1.8.1. Bulk polymerization                                                                                                 20

1.8.2. Multi-step swelling polymerization                                                                          22

1.8.3. Suspension polymerization                                                                                       22

1.8.4. Precipitation polymerization                                                                        23

1.8.5. Surface imprinting polymerization                                                                           24

1.8.6. Monolithic imprinted polymerization                                                                       25

1.9. Overview of the synthesis of metal ion selective polymers                                             25

1.9.1. Monomer selection and preparation                                                                         26

1.9.2. Preparation of complexes                                                                                         26

1.9.3. Preparation of polymers                                                                                           27

1.10. Testing for selectivity                                                                                                    28

TABLE OF CONTENTS                                                                                                PAGE

1.11. Polymer characterization                                                                                                29

1.11.1. Chemical characterization                                                                                      29

1.11.2. Morphological characterization                                                                              29

1.12. Applications of imprinted polymers in analytical chemistry                                          30

1.12.1. Separation                                                                                                              30

1.12.1.1. Chromatography                                                                                             30

1.12.1.2. Capillary electrochromatography                                                                   31

1.12.1.3. Solid phase extraction                                                                                                32

1.12.2. Sensors                                                                                                                   33

1.12.2.1. Selectrodes                                                                                                     34

1.12.2.2. Optrodes                                                                                                         34

1.12.2.3. Miscellaneous                                                                                                 35

1.12.3. Membrane separations                                                                                       35

1.12.4. Flow injection analysis                                                                                      36

 

Section II

Preparation of Novel Nano–Sized Ion Imprinted Polymers for the Selective Determination of Some Transition and Alkali Metal Ions:

Chapter One

Synthesis, characterization and development of a novel ion imprinted polymeric nanobeads for selective separation and sensitive determination of Zn(II) ions

2.1. Introduction                                                                                                                     40

2.2. Experimental                                                                                                                    41

2.2.1. Materials and Apparatus                                                                                          41

2.2.2. Preparation of Zn–IIP and NIP nanoparticles                                                         42

2.2.3 Sorption/desorption procedure                                                                                  43

2.2.4. Pretreatment and analysis of real samples                                                                44

2.3. Results and discussion                                                                                                     45

2.3.1. Preliminary complexation studies                                                                            45

TABLE OF CONTENTS                                                                                                PAGE

2.3.2. Characterization studies                                                                                           46

2.3.2.1. FT–IR spectra                                                                                                   46

2.3.2.2. SEM Studies                                                                                                    49

2.3.2.3 Thermal analysis                                                                                                49

2.3.3. Sorption/desorption studies                                                                                     51

2.3.3.1. Choice of Eluent                                                                                              51

2.3.3.2. Effect of pH                                                                                                     51

2.3.3.3. Adsorption capacity                                                                                         52

2.3.3.4. Effect of other experimental parameters                                                          54

2.3.4. Analytical performance                                                                                            54

2.3.5. Repeated use                                                                                                                        55

2.3.6. Selectivity study                                                                                                      56

2.3.7. Determination of Zn(II) ions in real samples                                                           58

2.4. Conclusion                                                                                                                       58

 

Chapter Two

An efficient and selective ion imprinted polymeric nanoparticles based on 5,10,15,20–tetrakis(3–hydroxyphenyl) porphyrin as a novel sorbent for fast determination of mercury ions

3.1. Introduction                                                                                                                     61

3.2. Experimental                                                                                                                    62

3.2.1. Materials and Apparatus                                                                                          62

3.2.2. Preparation of Hg(II)–imprinted polymeric nanoparticles                                       63

3.2.3 Sorption/desorption procedure                                                                                  64

3.2.4. Analysis of water samples                                                                                        64

3.3. Results and discussion                                                                                                     64

3.3.1. Characterization of synthesized IIP nanobeads                                                       65

3.3.1.1. SEM image                                                                                                       65

3.3.1.2. FT–IR Spectra                                                                                                  66

3.3.2. Sorption/desorption studies                                                                                          67

TABLE OF CONTENTS                                                                                                PAGE

3.3.2.1 Effect of pH                                                                                                               67

3.3.2.2 Choice of Eluent                                                                                                         68

3.3.2.3 Adsorption and desorption times                                                                               69

3.3.2.4 Adsorption capacity                                                                                                    71

3.3.2.5. Maximum sample volume and weight of IIP                                                            71

3.3.2.6. Stability and repeated use                                                                                          72

3.3.3. Analytical performance                                                                                                 74

3.3.4. Selectivity study                                                                                                           74

3.3.5. Analytical applications                                                                                                  75

3.4. Conclusion                                                                                                                       76

 

Chapter Three

Application of flow injection analysis for highly selective solid phase extraction and on-line photometric determination of mercury ions based on ion imprinted polymeric nanobeads

4.1. Introduction                                                                                                                     79

4.2. Experimental                                                                                                                    80

4.2.1. Materials and Apparatus                                                                                          80

4.2.2. Procedure                                                                                                                 81

4.2.3. Analysis of water and human hair samples                                                              82

4.3. Results and discussion                                                                                                     83

4.3.1. Sorption/desorption studies                                                                                     83

4.3.2. Choice of Eluent                                                                                                      83

4.3.3. Effect of pH                                                                                                                         86

4.3.4. Effect of the loading and leaching flow rates                                                         86

4.3.5. Selectivity study                                                                                                      88

4.3.6. Analytical performance                                                                                            89

4.3.7. Determination of Hg2+ ions in real samples                                                             91

4.4. Conclusion                                                                                                                       93

TABLE OF CONTENTS                                                                                                PAGE

Chapter Four

Preparation of a novel potassium ion imprinted polymeric nanoparticles based on dicyclohexyl 18C6 for selective determination of K+ ion in different water samples

5.1. Introduction                                                                                                                     95

5.2. Experimental                                                                                                                    97

5.2.1. Materials and Apparatus                                                                                          97

5.2.2. Preparation of K+–ion imprinted polymeric nanoparticles                                       98

5.2.3. Sorption/desorption procedure                                                                                 98

5.3. Results and discussion                                                                                                     98

5.3.1. Characterization studies                                                                                           98

5.3.1.1. SEM                                                                                                                 98

5.3.1.2. FT–IR Spectra                                                                                                  99

5.3.2. Sorption/desorption experiments                                                                             100

5.3.2.1. Effect of pH                                                                                                     100

5.3.2.2. Choice of Eluent                                                                                              102

5.3.2.3. Adsorption and desorption times                                                                     103

5.3.2.4. Adsorption capacity                                                                                         103

5.3.2.5. Preconcentration factor and amount of sorbent                                               105

5.3.2.6. Reusability and stability                                                                                   106

5.3.2.7. Analytical performance                                                                                    107

5.3.2.8. Selectivity study                                                                                               107

5.3.2.9. Analytical applications                                                                                     109

5.4. Conclusion                                                                                                                       110

Chapter Five

Highly selective recognition and sensitive determination of cesium ion by imprinting of Cs–Dibenzo24crown8 complex as template in the polymeric nanobeads assisted by precipitation polymerization

6.1. Introduction                                                                                                                     112

6.2. Experimental                                                                                                                    113

TABLE OF CONTENTS                                                                                                PAGE

6.2.1. Materials and Apparatus                                                                                          113

6.2.2. Preparation of Cs+–ion imprinted polymeric nanoparticles                                      114

6.2.3. Sorption/desorption procedure                                                                                 114

6.3. Results and discussion                                                                                                     115

6.3.1. Characterization studies                                                                                           115

6.3.2. Sorption/desorption experiments                                                                         116

6.3.2.1 Choice of Eluent                                                                                               116

6.3.2.2. Effect of pH                                                                                                     117

6.3.2.3. Adsorption and desorption times                                                                     118

6.3.2.4. Adsorption capacity                                                                                         119

6.3.2.5. Preconcentration factor and amount of sorbent                                               120

6.3.2.6. Reusability and stability                                                                                   121

6.3.2.7. Analytical performance                                                                                    122

6.3.2.8. Selectivity                                                                                                         122

6.3.2.9. Analytical applications                                                                                     124

6.4. Conclusion                                                                                                                       125

 

PART B

Quantum Dots

Section I

Introduction and Literature Review

 

7.1. Introduction                                                                                                                     127

7.2. Semiconductor quantum dots                                                                                          128

7.3. Quantum size confinement                                                                                              129

7.4. Properties of QDs                                                                                                                        132

7.4.1. Electronic properties of QDs                                                                                   132

7.4.2. Optical properties of QDs                                                                                        133

7.4.2.1. Absorption                                                                                                        134

7.4.2.2. Photoluminescence                                                                                           134

7.5. Quantum dots vs. Organic fluorophores                                                                          136

7.6. Types of QDs                                                                                                                   139

7.7. Toxicity of QDs                                                                                                               139

7.8. Zinc sulfide                                                                                                                      141

7.9. Synthesis methods of semiconductor nanocrystals                                                         141

7.9.1. Water-based synthesis approaches to QDs                                                              142

7.9.2. Organometallic synthesis of QDs: The hot-injection approach                                142

7.9.3. Versatility of the hot-injection approach                                                                 144

7.9.4. Greener hot-injection syntheses                                                                               144

7.9.5. Organometallic syntheses of QDs not based on the hot-injection approach           145

7.9.6. The liquid-solid-solution approach for the synthesis of QDs                                  145

7.9.7. Hydrothermal method/Microwave-assisted method                                                147

7.10. Doped nanocrystals                                                                                                       147

7.10.1. Why dope semiconductor nanocrystals?                                                                147

7.10.2. Synthesis and characterization of doped NCs                                                       148

7.10.3. Theoretical models                                                                                                 149

7.11. Application of QDs                                                                                                       150

7.11.1. Biological applications                                                                                           151

7.11.1.1. Fluorescence/bioluminescence resonance energy transfer analysis                151

7.11.1.2. Cell labeling                                                                                                    152

7.11.1.3. Gene technology                                                                                            153

7.11.1.4. In vivo imaging                                                                                              153

7.11.2. Analytical applications                                                                                           154

7.11.2.1. Chemiluminescence and Electrogenerated chemiluminescence reactions      154

7.11.2.2. Surface plasmon resonance applications                                                        155

7.11.2.3. Fluorescence–based sensors                                                                           155

7.11.2.4. QD–based pH probes                                                                                                 157

7.11.2.5. Electrochemical –based sensors                                                                     157

7.11.2.6. Chip detection                                                                                                            158

7.11.2.7. Capillary Electrophoresis                                                                                158

 

TABLE OF CONTENTS                                                                                                PAGE

Section II

Synthesis, Characterizations and Applications of Nano–Sized ZnS Quantum Dots: Interaction Study with BSA, Determination of Hazardous Anions, and Removal of Pollutant Dyes

 

Chapter One

Synthesis and characterizations of ultra–small ZnS and Zn(1-x)FexS quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin

8.1. Introduction                                                                                                                     161

8.2. Experimental                                                                                                                    162

     8.2.1. Materials and apparatus                                                                                           162

     8.2.2. Synthesis of pure and doped ZnS QDs                                                                   163

     8.2.3. Spectroscopic studies of QD–BSA interactions                                                      163

8.3. Results and discussion                                                                                                     164

     8.3.1. Characterization and optical properties of Zn(1-x)FexS QDs                                     164

            8.3.1.1. STM of QDs                                                                                                  164

            8.3.1.2. UV–Vis studies of QDs                                                                                165

            8.3.1.3. X–ray diffraction characterization                                                                 169

     8.3.2. Spectroscopic studies of BSA–QDs interactions                                                    169

            8.3.2.1. Absorption characteristic of BSA–QD systems                                            169

            8.3.2.2. Steady-state fluorescence measurements                                                       171

            8.3.2.3. Binding constant and number of binding sites for BSA–QDs                      173

            8.3.2.4. Determination of thermodynamic parameters and nature of forces involved

                         in BSA–QDs interactions                                                                              174

  1. 4. Conclusion 176

Chapter Two

Zinc sulfide quantum dot as a novel luminescent probe for highly selective determination of hazardous cyanide ion

9.1. Introduction                                                                                                                     178

9.2. Experimental                                                                                                                    179

TABLE OF CONTENTS                                                                                                PAGE

9.2.1. Apparatus and materials                                                                                               179

     9.2.2. Fluorescent detection of CN–                                                                                                              179

9.3. Results and discussion                                                                                                     180

     9.3.1. Characterization of the synthesized ZnS QDs                                                         180

            9.3.1.1. TEM images of the QDs                                                                                180

            9.3.1.2. X–ray diffraction                                                                                           180

            9.3.1.3. Optical characteristics of ZnS QDs                                                               181

     9.3.2. Effect of pH                                                                                                             184

     9.3.3. Effect of the QDs concentration                                                                             185

     9.3.4. Fluorescence detection of cyanide ion by the quenching emission of ME–capped

ZnS QDs                                                                                                                                 186

     9.3.5. Interference study of foreign anions                                                                        187

     9.3.6. Determination of cyanide in water samples                                                             188

       9.3.7. Proposed mechanism                                                                                        189

9.4. Conclusion                                                                                                                       190

Chapter Three

Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe

10.1. Introduction                                                                                                                   193

10.2. Experimental                                                                                                                  194

     10.2.1. Apparatus and materials                                                                                         194

10.2.2 Preparation of ZnS:Mn QDs                                                                                   195

      10.2.3. Fluorescent detection of sulfide                                                                           195

10.3. Results and discussion                                                                                                   195

10.3.1. Characterization of the synthesized ZnS:Mn QDs                                                     195

            10.3.1.1 TEM images of the QDs                                                                               195

            10.3.1.2. X–ray diffraction                                                                                         196

            10.3.1.3. Optical characteristics of ZnS:Mn nanoparticles                                         197

10.3.2. Effect of pH                                                                                                               199

TABLE OF CONTENTS                                                                                                PAGE

10.3.3. Effect of the QDs concentration                                                                                199

     10.3.4. Effect of reaction time                                                                                           200

     10.3.5. Spectrofluorimetric determination of sulfide ion by ZnS:Mn QDs                       201

     10.3.6. Interference study                                                                                                  204

     10.3.7. Determination of sulfide in water samples                                                            204

10.3.8. Proposed mechanism                                                                                              204

10.4. Conclusion                                                                                                                     205

 

Chapter Four

Comparative investigation of photoactivity behavior of ZnS and Zn(1-x)Fe(x)S quantum dots as new class of nanophotocatalysts for removal of cationic dyes

11.1. Introduction                                                                                                                   208

11.2. Experimental                                                                                                                  209

11.2.1. Materials and apparatus                                                                                         209

11.2.3. UV/ Zn(1-x)FexS QDs process                                                                                 210

11.3. Results and discussion                                                                                                   211

11.3.1. Characterization of nanophotocatalysts                                                                 211

11.3.1.1. TEM image of QDs                                                                                        211

11.3.1.2. X–ray diffraction                                                                                           211

11.3.2. Decolorization efficiency of UV/ZnS process                                                       212

11.3.2.1. The effect of pH                                                                                             214

11.3.2.2 Dosage of Nanoparticles                                                                                 216

11.3.2.3. Effect of initial dye concentration                                                                 216

11.3.3. Decolorization efficiency of UV/Zn(1-x)FexS process                                             217

11.3.4. Influence of initial dye concentration                                                                    217

11.3.5. Kinetic model and mechanism of degradation                                                      223

11.3.5.1. Kinetic Study                                                                                                 223

11.3.5.2. Mechanism of degradation                                                                             223

11.3.6. Reproducibility of the photocatalysts                                                                    229

11.4. Conclusion                                                                                                                     229

LIST OF FIGURES                                                                                                         PAGE

Contents

Fig. 1.1. Principle of Molecular Imprinting inspired…                                                           5

Fig. 1.2. Schematic representation of covalent and non-covalent…                                      8

Fig. 1.3. Common functional monomers used in non-covalent…                                          15

Fig. 1.4. Chemical structure of common cross-linkers used…                                               16

Fig.1.5. Chemical structure of common initiators used…                                                      19

Fig.1.6. Schematical representation of the synthetic steps…                                                 22

Fig. 1.7. The three significant methods of metal ion…                                                          28

Fig. 2.1. Schematic representation of the syntheses of Zn(II) …                                           43

Fig. 2.2. (A) UV–Vis spectra for titration of morin…                                                           46

Fig. 2.3. The FT–IR spectra of unleached and leached…                                                      48

Fig. 2.4. Scanning electron micrograph (SEM) of Zn–IIP…                                                 48

Fig. 2.5. TG/DTA curves for thermal decomposition…                                                         50

Fig. 2.6. Effect of pH on sorption of Zn2+ ion on imprinted…                                              52

Fig. 2.7. The effect of Zn2+ ion initial concentration…                                                          53

Fig. 2.8. Effect of 22 adsorption–desorption cycles…                                                          56

Fig. 3.1. Schematic representation of the synthesis of Hg(II) …                                           63

Fig. 3.2. Scanning electron micrograph of Hg–IIP…                                                             65

Fig. 3.3. The FT–IR spectra of unleached (A) and leached…                                               66

Fig. 3.4. Effect of sample pH on the extraction percent…                                                    68

Fig. 3.5. Influence of HNO3 concentration…                                                                                    69

Fig. 3.6. Effect of adsorption (A), and leaching (B) time…                                                  70

Fig. 3.7. Effect of initial concentration of mercury ion…                                                      71

Fig. 3.8. Influence of IIP weight on the elution…                                                                 73

Fig. 3.9. Effect of 12 adsorption–desorption cycles…                                                          73

Fig. 4.1. Schematic diagram of the IIP–FIA manifold…                                                      82

Fig.4.2. The typical recording of photometric response…                                                     84

Fig. 4.3. Influence of HNO3 concentration on the elution…                                                             85

Fig. 4.4. Effect of sample pH on the adsorption of Hg2+…                                                   85

Fig. 4.5. Effect of loading flow rate on the elution of Hg2+…                                              87

LIST OF FIGURES                                                                                                         PAGE

Fig. 4.6. Effect of eluent flow rate on the elution of Hg2+…                                                             87

Fig. 4.7. (A) Photometric responses of eluted mercury ion…                                                90

Fig. 4.8. Precision of the proposed method for eight…                                                         91

Fig. 5.1. Schematic representation of the syntheses …                                                          97

Fig. 5.2. Scanning electron micrograph of K+ ion–imprinted…                                             99

Fig 5.3. The FT–IR spectra of unleached (A) and leached…                                                100

Fig. 5.4. Effect of sample pH on the adsorption of K+ ion…                                                            101

Fig. 5.5. Influence of HNO3 concentration on the elution of K+…                                       102

Fig. 5.6. Effect of adsorption and desorption time on the percent…                                                104

Fig. 5.7. Effect of initial concentration of potassium ion…                                                   104

Fig. 5.8. Influence of IIP weight on the elution…                                                                 105

Fig. 5.9. Effect of 15 adsorption–desorption cycles…                                                          106

Fig. 6.1. Schematic representation of the syntheses…                                                           114

Fig. 6.2. Scanning electron micrograph (SEM) of Cs+…                                                       115

Fig. 6.3. Influence of HNO3 concentration…                                                                                    117

Fig. 6.4. Effect of sample pH on the extraction…                                                                 117

Fig. 6.5. Effect of adsorption and leaching time…                                                                119

Fig. 6.6. Effect of initial concentration of cesium ion…                                                        120

Fig. 6.7. Influence of IIP weight on the elution…                                                                 121

Fig. 6.8. Effect of 15 adsorption–desorption cycles…                                                          122

Fig. 7.1. A schematic of bulk, quantum well  …                                                                    131

Fig. 7.2. Spatial electronic state diagram for bulk…                                                              133

Fig. 7.3. Absorption and normalized photoluminescence…                                                   133

Fig. 7.4. Fluorescence in a bulk semiconductor…                                                                  135

Fig. 7.5. Schematic representation of the exciton states…                                                     136

Fig. 7.6. Size-tunable fluorescence spectra of CdSe…                                                          137

Fig. 7.7. Excitation (a) and emission (b) profiles…                                                                138

Fig. 7.8. (Left) Schematic standard setup for a hot-injection…                                             143

Fig. 7.9. Sketch highlighting the various processes involved…                                             146

Fig. 7.10. Schematic and characteristics of three models used…                                          149

LIST OF FIGURES                                                                                                         PAGE

Fig. 7.11. Quantum dot–based (ECL) reaction mechanism…                                               154

Fig. 8.1. 2D STM images of an individual (A) and a typical…                                             164

Fig. 8.2. UV–Vis absorption spectra of ZnS quantum dots…                                               166

Fig. 8.3. UV–Vis spectra of Zn(1-x)FexS QDs at constant…                                                   167

Fig. 8.4. UV–Vis absorption spectra of QDs…                                                                     168

Fig. 8.5. X–ray diffraction pattern of Zn0.98Fe0.02S…                                                            169

Fig. 8.6. UV–Vis absorption spectra of BSA…                                                                     170

Fig. 8.7. Fluorescence emission spectra of BSA…                                                                 172

Fig. 8.8. Unmodified (at 298 K) and modified…                                                                  173

Fig. 9.1. Typical TEM image of the 2–mercaptoethanol capped ZnS…                                181

Fig. 9.2. XRD pattern of the prepared ZnS nanocrystal…                                                    181

Fig. 9.3. UV–Vis absorption (A) and fluorescence (B) spectra…                                          182

Fig. 9.4. The plot of (ahv)2 vs. (hv) of 2–mercaptoethanol…                                                 183

Fig. 9.5. (A) Effect of pH on the fluorescence intensity…                                                    184

Fig. 9.6. Effect of the concentration of ME capped ZnS QDs…                                          185

Fig. 9.7. Effect of the cyanide concentration (0.00–2.59×10-5 mol.L-1) …                            186

Fig. 9.8. Stern–Volmer plot of cyanide concentration dependence…                                   187

Fig. 9.9. Intensity change of QDs…                                                                                      188

Fig. 10.1. Typical TEM image of the 2–mercaptoethanol…                                                  196

Fig. 10.2. XRD pattern of the prepared ZnS:Mn nanocrystals…                                          196

Fig. 10.3. UV–Vis absorption (A) and fluorescence spectra  …                                            198

Fig. 10.4. The plot of (αhv)2 vs. (hv) of ZnS:Mn nanoparticles…                                          198

Fig. 10.5. The fluorescent intensity change of system…                                                        199

Fig. 10.6. Effect of the concentration of colloidal ZnS:Mn…                                               200

Fig. 10.7. Effect of the time reaction under optimal…                                                          200

Fig. 10.8. Effect of the sulfide concentration…                                                                    201

Fig. 10.9. Stern–Volmer plot of sulfide concentration…                                                       202

Fig.11.1. Typical TEM image of the ZnS (left)…                                                                  212

Fig. 11.2. XRD patterns of the ZnS and Zn0.95Fe0.05S QDs…                                               212

Fig. 11.3. Decrease of absorption spectra…                                                                           213

LIST OF FIGURES                                                                                                         PAGE

Fig. 11.4. Effect of pH on photodegradation efficiency…                                                    215

Fig. 11.5. Effect of dosage of nanophotocatalysts…                                                             216

Fig. 11.6. The absorbance changes of dyes…                                                            218

Fig. 11.7. Effect of initial dyes concentration…                                                                    219

Fig. 11.8. Decrease of absorption spectra…                                                                           220

Fig. 11.9. The absorbance changes of dyes…                                                            221

Fig. 11.10. Effect of initial dyes concentration…                                                                  222

Figure 11.11. Kinetic data of photodegradation…                                                                225

Figure 11.12. Kinetic data of photodegradation…                                                                226

Figure 11.13. Kinetic data of photodegradation…                                                                227

Fig. 11.14. Reproducibility behavior of ZnS…                                                                      230

LIST OF TABLES                                                                                                         PAGE

Contents

Table 1.1. Summary of imprinted polymeric networks prepared…                                        21

Table 2.1. Effect of type and amount of eluent on the extraction…                                     51

Table 2.2 Influence of various parameters on the extraction percent…                                 55

Table 2.3. Distribution ratio (Kd), selectivity coefficient…                                                    57

Table 2.4. Determination of Zn(II) ions in real samples…                                                     59

Table 2.5. Comparison of the proposed method with some…                                               59

Table 3.1. Performance characteristics of the method                                                            74

Table 3.2. Distribution ratio (Kd), selectivity coefficient…                                                    75

Table 3.3. Determination of Hg2+ ions in three different water…                                         76

Table 3.4. Comparison of the proposed method with some…                                                77

Table 4.1. Effect of type and volume of different Eluent…                                                  84

Table 4.2. Effects of the divers ions on the recoveries…                                                      88

Table 4.3. Determination of Hg2+ ions in human hair samples…                                            92

Table 4.4. Determination of Hg2+ ions in three different water…                                          93

Table 5.1. Performance characteristics of the preconcentration…                                         107

Table 5.2. Distribution ratio (Kd), selectivity coefficient…                                                    108

Table 5.3. Determination of potassium ions in different water…                                          109

Table 6.3. Comparison of the proposed method with some…                                               110

Table 6.1. Performance characteristics of the preconcentration…                                         123

Table 6.2. Distribution ratio (Kd), selectivity coefficient…                                                    123

Table 6.3. Determination of cesium ions in different water…                                               124

Table 7.1. Desirable features of a luminescent probe…                                                         137

Table 8.1. The UV shoulder position and optical size…                                                        166

Table 8.2. UV shoulder position of doped Zn(1-x)FexS QDs…                                               167

Table 8.3. Determination of Fe3+ ion in four iron doped quantum dot…                              168

Table 8.4 Binding constants (Ka), number of binding sites…                                                174

Table 8.5 Thermodynamic parameters for interaction of BSA…                                          175

Table 9.1. Effect of other anions on the selectivity…                                                            189

Table 9.2. Determination results of cyanide ion in two water…                                            189

Table 9.3. Comparison of the proposed method with some…                                               191

Table 10.1. Effect of other anions on the selectivity…                                                          203

Table 10.2. Determination results of sulfide ion…                                                                 204

Table 10.3. Comparison of the proposed method…                                                               206

Table 11.1. Pseudo first order rate constants…                                                                       228

Table 11.2. Pseudo first order rate constants …                                                                     228

Table 11.3. Pseudo first order rate constants…                                                                      228

Table 11.4. Characteristical performance of some…                                                              231

Table 11.5. Characteristical performance of some…                                                              232

Table 11.6. Characteristical performance of some…                                                              232

قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo