%40تخفیف

Part A: Organoplatinum(II) Complexes with Bridging bis(Diphenylphosphino)ethane or Monodentate Benzo[h]quinolyl Ligands   Part B: Selectivity in Metal–Carbon Bond Protonolysis in Cycloplatinated(II) Complexes

تعداد247صفحه در فایل word

Ph.D. DISSERTATION IN

INORGANIC CHEMISTRY

 

Part A: Organoplatinum(II) Complexes with Bridging bis(Diphenylphosphino)ethane or Monodentate Benzo[h]quinolyl Ligands

 

Part B: Selectivity in Metal–Carbon Bond Protonolysis in Cycloplatinated(II) Complexes

In part A, cyclometalated complexes [Pt(ppy)R(SMe2)] or [Pt(bhq)R(SMe2)], where ppyH = 2-phenylpyridine or bhqH = benzo[h]quinoline and R = methyl or p-tolyl, react with bis(diphenylphosphino)ethane, dppe, in a 1 : 1 ratio to give the corresponding complexes [Pt(κ1C-ppy)R(dppe)], 1-2, or [Pt(κ1C-bhq)R(dppe)], 3, in which the ppy or bhq ligands are monodentate and dppe is chelating. The similar reaction in a 2 : 1 ratio gives the binuclear complexes [Pt2(ppy)2R2(µ-dppe)], 4 & 6, or [Pt2(bhq)2R2(µ-dppe)], 5 & 7, in which the dppe ligands are in the unusual bridging bidentate bonding mode.

In Part B, Reaction of each of the known starting complexes [PtR(C^N)(SMe2)] with one equivalent of CF3CO2H, gave the complexes [Pt(C^N)(CF3CO2)(SMe2)], 89. The bis-chelate complexes [Pt(C^N)(P^P)](CF3CO2), 1417, were obtained by reaction of complexes [Pt(C^N)(CF3CO2)(SMe2)], 89, with one equivalent of either of the P^P bisphosphine reagents, dppf = 1,1’-bis(diphenylphosphino)ferrocene or dppe. In contrast with the reaction with dppe, when the complex [Pt(bhq)(CF3CO2)(SMe2)], 9, was reacted with 0.5 equivalents of dppf, then the binuclear complex [Pt2(bhq)2(CF3CO2)2(μ-dppf)], 18, formed in pure form. In all the above-mentioned acid reactions, the M–R bond rather than the M–C bond of the cycloplatinated complex is cleaved. When the complexes [PtR(C^N)PPh3] in which C^N is ppy or tpy = deprotonated 2-p-tolylpyridine, were reacted with one equivalent of CF3CO2H, the course of the reaction reversed and the M–C bonds of the cycloplatinated complexes are cleaved rather than the M–R bonds. The latter reaction gave [PtR(κ1N-HC^N)(PPh3)(CF3CO2)], 1012, as an equilibrium mixture of two isomers. Crystal structures of the typical complexes show a variety of extensive intermolecular hydrogen bonding involving C–H bonds from the different ligands and electronegative atoms (O or F) from the CF3CO2¯ moiety. On the basis of data obtained from kinetic studies (using 1H-NMR spectroscopy), a dissociative mechanism is proposed for the case of isomerization process, involving dissociation of the κ1N-Htpy neutral ligand, rather than the alternative route of PPh3 or CF3CO2¯ ligand dissociation.

 

content

Part A: Organoplatinum(II) Complexes with Bridging bis(Diphenylphosphino)ethane or Monodentate Benzo[h]quinolyl Ligands  2

Chapter One: Introduction and Literature Review.. 3

A.1.1. General Introduction. 4

A.1.2. Metal Alkyl Complexes. 5

A.1.2.1. Structure and Bonding. 5

A.1.3. Organoplatinum Complexes. 6

A.1.3.1. Bonding. 7

A.1.3.2. Stability. 8

A.1.4. Phosphorus Ligands. 10

A.1.4.1. Structure and Bonding. 11

A.1.4.2. Steric Effects of Phosphorus Ligands. 12

A.1.4.3. Tolman Electronic Parameter 13

A.1.4.4. Cone Angles: Tolman’s and Plato’s. 14

A.1.4.5. Bite Angle. 16

A.1.4.6. Computational Tolman Parameters. 17

A.1.4.7. Phosphine Analogues. 17

A.1.4.8. Complexes of Platinum with Phosphines. 17

A.1.4.9. Chemistry of Bis(diphenylphosphino)ethane. 18

Chapter Two: Experimental. 20

A.2.1. General Remarks. 21

A.2.2. 1H-NMR Spectroscopy. 21

A.2.3. 13C{1H}-NMR Spectroscopy. 21

A.2.4. 31P{1H}-NMR Spectroscopy. 21

A.2.5. Microanalysis. 22

A.2.6. Determination of Melting Points. 22

A.2.7. Preparation of Dry Ether. 22

A.2.8. Preparation of Starting Compounds. 22

A.2.8.1. Preparation of K2PtCl6 22

A.2.8.1.1. Preparation of K2PtCl6 from Laboratory Platinum Residual 22

A.2.8.1.2. Preparation of K2PtCl6 from Pure Platinum Metal 23

A.2.8.2. Preparation of K2PtCl4 24

A.2.8.3. Preparation of cis/trans-[PtCl2(SMe2)2] 24

A.2.8.4. Preparation of [Me2Pt(m-SMe2)2PtMe2] 25

A.2.8.5. Preparation of para-Tolyllithium Solution. 25

A.2.8.6. Preparation of cis-[Pt(p-MeC6H4)2(SMe2)2] 26

A.2.8.7. Preparation of [PtMe(ppy)(SMe2)] 26

A.2.8.8. Preparation of [PtMe(bhq)(SMe2)] 27

A.2.8.9. Preparation of [Pt(p-MeC6H4)(ppy)(SMe2)] 27

A.2.8.10. Preparation of [Pt(p-MeC6H4)(bhq)(SMe2)] 27

A.2.9. Preparation of Chelating dppe Complexes. 28

A.2.9.1. Preparation of [PtMe(ppy)(dppe)], 1. 28

A.2.9.2. Preparation of [Pt(p-MeC6H4)(ppy)(dppe)], 2. 28

A.2.9.3. Preparation of [Pt(p-MeC6H4)(bhq)(dppe)], 3. 29

A.2.10. Preparation of Binuclear dppe Complexes. 29

A.2.10.1. Preparation of [Pt2Me2(ppy)2(m-dppe)], 4. 29

A.2.10.2. Preparation of [Pt2(Me)2(bhq)2(m-dppe)], 5. 29

A.2.10.3. Preparation of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6. 30

A.2.10.4. Preparation of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7. 30

A.2.11. DFT Calculations. 30

A.2.12. X-Ray Structure Determinations. 31

Chapter Three: Results and Discussion. 36

A.3.1. Synthesis and Characterization of Starting Compounds. 41

A.3.1.1. cis/trans-[PtCl2(SMe2)2] 41

A.3.1.1.1. 1H-NMR of cis/trans-[PtCl2(SMe2)2] 41

A.3.1.2. [Me2Pt(m-SMe2)2PtMe2] 43

A.3.1.2.1. 1H-NMR of [Me2Pt(m-SMe2)2PtMe2] 43

A.3.1.3. cis-[Pt(p-MeC6H4)2(SMe2)2] 45

A.3.1.3.1. 1H-NMR of cis-[Pt(p-MeC6H4)2(SMe2)2] 45

A.3.1.4. [Pt(Me)(ppy)(SMe2)] 48

A.3.1.4.1. 1H-NMR of [Pt(Me)(ppy)(SMe2)] 48

A.3.1.5. [Pt(Me)(bhq)(SMe2)] 50

A.3.1.5.1. 1H-NMR of [Pt(Me)(bhq)(SMe2)] 50

A.3.1.6. [Pt(p-MeC6H4)(ppy)(SMe2)] 52

A.3.1.6.1. 1H-NMR of [Pt(p-MeC6H4)(ppy)(SMe2)] 52

A.3.1.6.2. X-Ray Crystal Structure Determination of [Pt(p-MeC6H4)(ppy)(SMe2)] 54

A.3.1.7. [Pt(p-MeC6H4)(bhq)(SMe2)] 56

A.3.1.7.1. 1H-NMR of [Pt(p-MeC6H4)(bhq)(SMe2)] 56

A.3.1.7.2. 13C{1H}-NMR of [Pt(p-MeC6H4)(bhq)(SMe2)] 58

A.3.1.7.3. X-Ray Crystal Structure Determination of [Pt(p-MeC6H4)(bhq)(SMe2)] 60

A.3.2. Synthesis and Characterization of Chelating dppe Complexes. 63

A.3.2.1. [Pt(Me)(κ1C-ppy)(dppe)], 1. 63

A.3.2.1.1. 1H-NMR of [Pt(Me)(κ1C-ppy)(dppe)], 1. 63

A.3.2.1.2. 31P{1H} -NMR of [Pt(Me)(κ1C-ppy)(dppe)], 1. 65

A.3.2.2. [Pt(p-MeC6H4)(κ1C-ppy)(dppe)], 2. 67

A.3.2.2.1. 1H-NMR of [Pt(p-MeC6H4)(κ1C-ppy)(dppe)], 2. 67

A.3.2.2.2. 31P{1H} -NMR of [Pt(p-MeC6H4)(κ1C-ppy)(dppe)], 2. 69

A.3.2.3. [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3. 71

A.3.2.3.1. 1H-NMR of [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3. 71

A.3.2.3.2. 31P{1H} -NMR of [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3. 74

A.3.2.3.3. Computational Study of [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3. 76

A.3.3. Synthesis and Characterization of Binuclear dppe complexes. 77

A.3.3.1. [Pt2(Me)2(ppy)2(m-dppe)], 4. 77

A.3.3.1.1. 1H-NMR of [Pt2(Me)2(ppy)2(m-dppe)], 4. 77

A.3.3.1.2. 31P{1H }-NMR of [Pt2(Me)2(ppy)2(m-dppe)], 4. 79

A.3.3.2. [Pt2(Me)2(bhq)2(m-dppe)], 5. 81

A.3.3.2.1. 1H-NMR of [Pt2(Me)2(bhq)2(m-dppe)], 5. 81

A.3.3.2.2. 31P{1H }-NMR of [Pt2(Me)2(bhq)2(m-dppe)], 5. 83

A.3.3.3. [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6. 85

A.3.3.3.1. 1H-NMR of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6. 85

A.3.3.3.2. 31P{1H }-NMR of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6. 87

A.3.3.3.3. X-Ray Crystal Structure Determination of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6  89

A.3.3.4. [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7. 92

A.3.3.4.1. 1H-NMR of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7. 92

A.3.3.4.2. 31P{1H }-NMR of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7. 94

A.3.3.4.3. X-Ray Crystal Structure Determination of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7  96

A.3.4. Conclusion. 98

References. 101

Part B: Selectivity in metal–carbon bond protonolysis in cycloplatinated(II) complexes. 105

Chapter One: Introduction and Literature Review.. 106

B.1.1. Aromatic Nitrogen-Donor Ligands. 107

B.1.2. Cyclometalation Reactions. 108

B.1.3. Scope of Cyclometalation Reactions. 114

B.1.3.1. Nature of the Metal 114

B.1.3.2. Nature of the Metalated System.. 114

B.1.3.3. Effect of the Donor Atom.. 115

B.1.3.4. Chelate Ring Size. 115

B.1.4. Mechanistic studies of Cyclometalation Reactions. 116

B.1.5. Synthesis of cyclometalated species. 117

B.1.5.1. Effect of Leaving Groups. 118

B.1.5.2. Steric Factors. 118

B.1.5.3. Electronic Effects. 119

B.1.6. Reactions of Cyclometalated Complexes. 121

B.1.7. Cyclometalation of the Platinum Metals with Nitrogen. 122

B.1.8. C-H Activation by Pt Complexes. 123

B.1.8.1. C-H Activation by Pt(II) 128

Chapter Two: Experimental. 131

B.2.1. Preparation of Starting Compounds. 132

B.2.1.1. Preparation of [PtMe(ppy)(PPh3)] 132

B.2.1.2. Preparation of [Pt(p-MeC6H4)(ppy)(PPh3)] 132

B.2.1.3. Preparation of [PtMe(tpy)(PPh3)] 132

B.2.2. Protonolysis with CF3CO2H.. 133

B.2.2.1. Preparation of [Pt(ppy)(CF3CO2)(SMe2)], 8. 133

B.2.2.2. Preparation of [Pt(bhq)(CF3CO2)(SMe2)], 9. 133

B.2.2.3. Preparation of [PtMe(κ1N-Hppy)(PPh3)(CF3CO2)], 10a + 10b. 133

B.2.2.4. Preparation of [Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11a + 11b  134

B.2.2.5. Preparation of [PtMe(κ1N-Htpy)(PPh3)(CF3CO2)], 12a + 12b. 134

B.2.3. Reaction with Phosphine ligands. 135

B.2.3.1. Preparation of [Pt(ppy)(PPh3)(CF3CO2)], 13. 135

B.2.3.2. Preparation of [Pt(ppy)(dppe)][CF3CO2], 14. 135

B.2.3.3. Preparation of [Pt(bhq)(dppe)][CF3CO2], 15. 136

B.2.3.4. Preparation of [Pt(ppy)(dppf)][CF3CO2], 16. 136

B.2.3.5. Preparation of [Pt(bhq)(dppf)][CF3CO2], 17. 136

B.2.3.6. Preparation of [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18. 137

B.2.4. Kinetic Studies Using 1H-NMR Monitoring. 137

B.2.5. Computational Details. 137

B.2.6. X-Ray Crystal Structure Determination. 138

Chapter Three: Results and Discussion. 143

B.3.1. Outline. 144

B.3.2. Synthesis and Characterization of Starting Compounds. 145

B.3.2.1. [PtMe(ppy)(PPh3)] 145

B.3.2.1.1. 1H-NMR of [PtMe(ppy)(PPh3)] 145

B.3.2.2. [Pt(p-MeC6H4)(ppy)(PPh3)] 147

B.3.2.2.1. 1H-NMR of [Pt(p-MeC6H4)(ppy)(PPh3)] 147

B.3.2.3. [PtMe(tpy)(PPh3)] 149

B.3.2.3.1. 1H-NMR of [PtMe(tpy)(PPh3)]. 149

B.3.3. Protonolysis with CF3CO2H.. 151

B.3.3.1. [Pt(ppy)(CF3CO2)(SMe2)], 8. 151

B.3.3.1.1. 1H-NMR of [Pt(ppy)(CF3CO2)(SMe2)], 8. 151

B.3.3.2. [Pt(bhq)(CF3CO2)(SMe2)], 9. 153

B.3.3.2.1. 1H-NMR of [Pt(bhq)(CF3CO2)(SMe2)], 9. 153

B.3.3.2.2. X-Ray Crystal Structure Determination of [Pt(bhq)(CF3CO2)(SMe2)], 9  155

B.3.3.3. [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a + 10b. 158

B.3.3.3.1. 1H-NMR of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a + 10b. 158

B.3.3.3.2. 31P{H} -NMR of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a + 10b  161

B.3.3.3.3. X-Ray Crystal Structure Determination of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a  163

B.3.3.4. [Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11a + 11b. 166

B.3.3.4.1. 1H-NMR of [Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11a + 11b  166

B.3.3.4.2. 31P{H} -NMR of [Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11a + 11b  169

B.3.3.5. [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a + 12b. 171

B.3.3.5.1. 1H-NMR of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a + 12b. 171

B.3.3.5.2. 31P{H} -NMR of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a + 12b  174

B.3.3.5.3. X-Ray Crystal Structure Determination of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a  176

B.3.3.5.4. Isomerization Investigation of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12  179

B.3.4. Reaction with Phosphine ligands. 186

B.3.4.1. [Pt(ppy)(PPh3)(CF3CO2)], 13. 186

B.3.4.1.1. 1H-NMR of [Pt(ppy)(PPh3)(CF3CO2)], 13. 186

B.3.4.1.2. 31P{H} -NMR of [Pt(ppy)(PPh3)(CF3CO2)], 13. 188

B.3.4.2. [Pt(ppy)(dppe)][CF3CO2], 14. 190

B.3.4.2.1. 1H-NMR of [Pt(ppy)(dppe)][CF3CO2], 14. 191

B.3.4.2.2. 31P{1H} -NMR of [Pt(ppy)(dppe)][CF3CO2], 14. 193

B.3.4.3. [Pt(bhq)(dppe)][CF3CO2], 15. 195

B.3.4.3.1. 1H-NMR of [Pt(bhq)(dppe)][CF3CO2], 15. 196

B.3.4.3.2. 31P{1H} -NMR of [Pt(bhq)(dppe)][CF3CO2], 15. 198

B.3.4.3.3. X-Ray Crystal Structure Determination [Pt(bhq)(dppe)][CF3CO2], 15. 200

B.3.4.4. [Pt(ppy)(dppf)][CF3CO2], 16. 203

B.3.4.4.1. 1H-NMR of [Pt(ppy)(dppe)][CF3CO2], 16. 203

B.3.4.4.2. 31P{1H} -NMR of [Pt(ppy)(dppf)][CF3CO2], 16. 205

B.3.4.5. [Pt(bhq)(dppf)][CF3CO2], 17. 207

B.3.4.5.1. 1H-NMR of [Pt(bhq)(dppf)][CF3CO2], 17. 208

B.3.4.5.2. 31P{1H} -NMR of [Pt(bhq)(dppf)][CF3CO2], 17. 210

B.3.4.6. [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18. 212

B.3.4.6.1. 1H-NMR of [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18. 213

B.3.4.6.2. 31P{1H} -NMR of [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18. 215

B.3.5. Conclusions. 217

References. 222

 

Table of Figures

 

Figure A.1.1. Orbital interaction in metal-alkyl bond…………………………..….5

Figure A.1.2. Bridging alkyl in Al2Me6………………………………………..…..6

Figure A.1.3. syn- and anti- forms of trans-[Pt(PEt3)2(o-MeC6H4)2]…………..…10

Figure A.1.4. Some typical phosphine ligands……………………………………10

Figure A.1.5. Shading represents orbital occupation…………………………….12

Figure A.1.6. Electronic and steric effects of common P-donor ligands plotted on a map according to Tolman…………………………………………13

Figure A.1.7. Some platinum complexes with bridging dppe ligands…………….19

Figure A.3.1. 1H-NMR spectrum of mixture cis/trans-[PtCl2(SMe2)2] in CDCl3…42

Figure A.3.2. 1H NMR spectrum of [Me2Pt(m-SMe2)2PtMe2] in CDCl3………….44

Figure A.3.3. 1H-NMR spectrum of cis-[Pt(p-MeC6H4)2(SMe2)2] in CDCl3……..47

Figure A.3.4. 1H-NMR spectrum of [Pt(Me)(ppy)(SMe2)] in CDCl3……………..49

Figure A.3.5. 1H-NMR spectrum of [Pt(Me)(bhq)(SMe2)] in CDCl3……………..51

Figure A.3.6. 1H-NMR spectrum of [Pt(p-MeC6H4)(ppy)(SMe2)] in CDCl3………53

Figure A.3.7. The crystal structure, aggregation and crystal packing of [Pt(p-MeC6H4)(ppy)(SMe2)]…………………………………………54-55

Figure A.3.8. 1H-NMR spectrum of [Pt(p-MeC6H4)(bhq)(SMe2)] in CDCl3………57

Figure A.3.9. 13C{1H}-NMR spectrum of [Pt(p-MeC6H4)(bhq)(SMe2)] in CDCl3..59

Figure A.3.10. Expansion of 13C{1H}-NMR spectrum of [Pt(p-MeC6H4)(bhq)(SMe2)] in CDCl3………………………………….60

Figure A.3.11. The crystal structure, aggregation and crystal packing of complex [Pt(p-MeC6H4)(bhq)(SMe2)]…………………………………..61-62

Figure A.3.12. 1H-NMR spectrum of [Pt(Me)(κ1C-ppy)(dppe)], 1, in CDCl3……64

Figure A.3.13. 31P{1H}-NMR spectrum of [Pt(Me)(κ1C-ppy)(dppe)], 1, in CDCl3………………………………………………………….…66

Figure A.3.14. 1H-NMR spectrum of [Pt(p-MeC6H4)(κ1C-ppy)(dppe)], 2, in C6D6………………………………………………………………68

Figure A.3.15. 31P{1H}-NMR spectrum of [Pt(p-MeC6H4)(κ1C-ppy)(dppe)], 2, in CDCl3…………………………………………………………….70

Figure A.3.16. 1H-NMR spectrum of [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3, in C6D6………………………………………………………………73

Figure A.3.17. 31P{1H}-NMR spectrum of [Pt(p-MeC6H4)(κ1C-bhq)(dppe)], 3, in CDCl3…………………………………………………………….75

Figure A.3.18. Views of the DFT calculated structure and the HOMO of [Pt(p-MeC6H4)(κ1C-bhq)(κ2P,P-dppe)]……………………………..…76

Figure A.3.19. 1H-NMR spectrum of [Pt2(Me)2(ppy)2(m-dppe)], 4, in CDCl3…….78

Figure A.3.20. 31P{1H}-NMR spectrum of [Pt2(Me)2(ppy)2(m-dppe)], 4, in CDCl3…………………………………………………………….80

Figure A.3.21. 1H-NMR spectrum of [Pt2(Me)2(bhq)2(m-dppe)], 5, in CDCl3….82

Figure A.3.22. 31P{1H}-NMR spectrum of  [Pt2(Me)2(bhq)2(m-dppe)], 5, in CDCl3…………………………………………………………….84

Figure A.3.23. 1H-NMR spectrum of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6, in CDCl3…………………………………………………………….86

Figure A.3.24. 31P{1H}-NMR spectrum of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6, in CDCl3…………………………………………………………….88

Figure A.3.25. The Crystal structure, aggregation and crystal packing of [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6………………………………….89-90

Figure A.3.26. 1H-NMR spectrum of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7, in CDCl3…………………………………………………………….93

Figure A.3.27. 31P{1H}-NMR spectrum of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7, in CDCl3…………………………………………………………….95

Figure A.3.28. The crystal structure, aggregation and crystal packing of [Pt2(p-MeC6H4)2(bhq)2(m-dppe)],7……………………………………96-97

Figure A.3.29. The calculated structures of (a) [Pt(Ph)(κ2C,N-ppy)(κ1P-dppe)] and (b) [Pt(Ph)(κ1C-ppy)(κ2P,P-dppe)]………………………..……99

Figure A.3.30. The calculated structures of (a) [Pt(Ph)(κ2C,N-bhq)(κ1P-dppm)] and (b) [Pt(Ph)(κ1C-bhq)(κ2P,P-dppm)]……………………..…99

Figure B.1.1. The types of cyclometalation reactions………………………..….109

Figure B.1.3. Cyclometalation reactions…………………………………………111

Figure B.1.4. Some example of ortho-metalation complexes…………………..111

Figure B.1.5. Cyclometalation reaction with heat……………………………….112

Figure B.1.6. Benzo-fused heterocycles ligands……………………….…….…113

Figure B.1.7. Example of six-membered cyclometalated complexes………….116

Figure B.1.8. Mechanisms of Cyclometalation reactions………………………..117

Figure B.1.9. Electronic effects of meta-substitution……………………………119

Figure B.1.10. Addition-Elimination mechanism……………………………….120

Figure B.1.11. Example of some cyclopalladated reactions……………………..121

Figure B.1.12. Cyclometalation of the Platinum Metals with Nitrogen…………122

Figure B.1.13. C-H Activation by Pt Complexes………………………………..124

Figure B.1.14. Shilov catalytic system…………………………………………..127

Figure B.1.15. Oxidation of alkanes to alcohols…………………………………128

Figure B.3.1. 1H-NMR spectrum of [Pt(Me)(ppy)(PPh3)] in CDCl3……………..146

Figure B.3.2. 1H-NMR spectrum of [Pt(p-MeC6H4)(ppy)(PPh3)] in CDCl3………148

Figure B.3.3. 1H-NMR spectrum of [Pt(Me)(tpy)(PPh3)] in CDCl3………………150

Figure B.3.4. 1H-NMR spectrum of [Pt(ppy)(CF3CO2)(SMe2)], 8, in CDCl3……152

Figure B.3.5. 1H-NMR spectrum of [Pt(bhq)(CF3CO2)(SMe2)], 9, in CDCl3……154

Figure B.3.6. The crystal structure, aggregation and crystal packing of [Pt(bhq)(CF3CO2)(SMe2)], 9……………………………….155-156

Figure B.3.7. 1H-NMR spectrum of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10, in CDCl3……………………………………………………………160

Figure B.3.8. 31P{1H}-NMR spectrum of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10, in CDCl3…………………………………………………………162

Figure B.3.9. Crystal structure, aggregation and crystal packing of [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a…………………………………163-164

Figure B.3.10. 1H-NMR spectrum of [Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11, in CDCl3……………………………………………………..168

Figure B.3.11. 31P{1H}-NMR spectrum of Pt(p-MeC6H4)(κ1N-Hppy)(PPh3)(CF3CO2)], 11, in CDCl3…………………………..170

Figure B.3.12. 1H-NMR spectrum of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12, in CDCl3……………………………………………………………173

Figure B.3.13. 31P{1H}-NMR spectrum of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12, in CDCl3…………………………………………………………175

Figure B.3.14. Crystal structure, aggregation and crystal packing of [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a…………………………………176-177

Figure B.3.15. Calculated structures and relative energies for [PtMe(κ1N-Hppy)(PPh3)(CF3CO2)], 10a, and its first dissociation step….…180

Figure B.3.16. Monitoring the 12a/12b isomerization process by 1H NMR spectroscopy (in the aliphatic region) in CDCl3 at 25°C…………181

Figure B.3.17. Changes in molar concentration versus time during equilibrium formation involving the isomerization process of 12a to 12b in CDCl3……………………………………………………………182

Figure B.3.18. Monitoring the 12a/12b isomerization process by 1H NMR spectroscopy (in the aliphatic region) in C6D6 at 25°C…………..184

Figure B.3.19. Changes in molar concentration versus time during equilibrium formation involving the isomerization process of 12a to 12b in C6D6……………………………………………………………..184

Figure B.3.20: 1H-NMR spectrum of [Pt(ppy)(PPh3)(CF3CO2)], 13,  in CDCl3…187

Figure B.3.21: 31P{1H}-NMR spectrum of [Pt(ppy)(PPh3)(CF3CO2)], 13, in CDCl3……………………………………………………………189

Figure B.3.22. 1H-NMR spectrum of [Pt(ppy)(dppe)][CF3CO2], 14, in CDCl3…..192

Figure B.3.23. 31P{1H}-NMR spectrum of [Pt(ppy)(dppe)][CF3CO2], 14, in CDCl3……………………………………………………………194

Figure B.3.24. 1H-NMR spectrum of [Pt(bhq)(dppe)][CF3CO2], 15, in CDCl3…..197

Figure B.3.25. 31P{1H}-NMR spectrum of [Pt(bhq)(dppe)][CF3CO2], 15, in CDCl3……………………………………………………………199

Figure B.3.26. The crystal structure, aggregation and crystal packing of [Pt(bhq)(dppe)][CF3CO2], 15……………………………….200-201

Figure B.3.27. 1H-NMR spectrum of [Pt(ppy)(dppf)][CF3CO2], 16, in CDCl3…..204

Figure B.3.28. 31P{1H}-NMR spectrum of [Pt(ppy)(dppf)][CF3CO2], 16, in CDCl3……………………………………………………………206

Figure B.3.29. 1H-NMR spectrum of [Pt(bhq)(dppf)][CF3CO2], 17, in CDCl3…..209

Figure B.3.30. 31P{1H}-NMR spectrum of [Pt(bhq)(dppf)][CF3CO2], 17, in CDCl3……………………………………………………………211

Figure B.3.31. 1H-NMR spectrum of [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18, in CDCl3……………………………………………………………214

Figure B.3.32. 31P{1H}-NMR spectrum of [Pt2(bhq)2(CF3CO2)2(µ-dppf)], 18, in CDCl3……………………………………………………………216

List of Tables

 

Table A.2.1. Crystal data and structure refinement for [Pt(p-MeC6H4)(ppy)(SMe2)]……………………………………………..32

Table A.2.2. Crystal data and structure refinement for [Pt(p-MeC6H4)(bhq)(SMe2)]……………………………………………..33

Table A.2.3. Crystal data and structure refinement for [Pt2(p-MeC6H4)2(ppy)2(m-dppe)].2/3 CH2Cl2, 6………………………………………………34

Table A.2.4. Crystal data and structure refinement for [Pt2(p-MeC6H4)2(ppy)2(m-dppe)].2 CH2Cl2, 7………………………………………………..35

Table A.3.1. Selected bond lengths [Å] and angles [°] for [Pt(p-MeC6H4)(ppy)(SMe2)]……………………………………………55

Table A.3.2. Selected bond lengths [Å] and angles [°] for [Pt(p-MeC6H4)(bhq)(SMe2)]……………………………………………62

Table A.3.3. Selected bond lengths [Å] and angles [°] for [Pt2(p-MeC6H4)2(ppy)2(m-dppe)], 6……………………………………………………………91

Table A.3.4. Selected bond lengths [Å] and angles [°] for [Pt2(p-MeC6H4)2(bhq)2(m-dppe)], 7…………………………………………………………..97

Table B.2.1. Crystal data and structure refinement for [Pt(bhq)(CF3CO2)(SMe2)], 9…………………………………………………………………139

Table B.2.2. Crystal data and structure refinement for [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a……………………………………..140

Table B.2.3. Crystal data and structure refinement for [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a……………………………….…….141

Table B.2.4. Crystal data and structure refinement for [Pt(bhq)(dppe)]CF3CO2, 15………………………………………………………….…….142

Table B.3.1. Selected bond lengths [Å], angles and torsion angles [°] for [Pt(bhq)(CF3CO2)(SMe2)], 9……………………………………157

Table B.3.2. Hydrogen bonds for [Pt(bhq)(CF3CO2)(SMe2)], 9 [Å and °]………157

Table B.3.3. Bond lengths [Å], angles and torsion angles [°] for [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a……………………………………..165

Table B.3.4. Hydrogen bonds for [Pt(Me)(κ1N-Hppy)(PPh3)(CF3CO2)], 10a [Å and °]…………………………………………………………………165

Table B.3.5. Bond lengths [Å], angles and torsion angles [°] for [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a………………………………………178

Table B.3.6. Hydrogen bonds for [Pt(Me)(κ1N-Htpy)(PPh3)(CF3CO2)], 12a [Å and °]…………………………………………………………………178

Table B.3.7. Data for the equilibrium formation between isomers 12a and 12b at 25°C……………………………………………………………..183

Table B.3.8. Bond lengths [Å], angles and torsion angles [°] for [Pt(bhq)(dppe)][CF3CO2], 15…………………………………….202

Table B.3.9. Hydrogen bonds for [Pt(bhq)(dppe)][CF3CO2], 15 [Å and °]…………………………………………………………………

قبلا حساب کاربری ایجاد کرده اید؟
گذرواژه خود را فراموش کرده اید؟
Loading...
enemad-logo