کارشناسی ارشد در رشته مهندسی فناوری اطلاعات- تجارت الکترونیک
شناسایی برخی اختلالات شبکه با استفاده از آنالیز زمان حقیقی ترافیک شبکه مبتنی بر نسل جدید ویولت و توابع مشابه
چکیده
امروزه با پیشرفت چشمگیر زمینه ها در استفاده متبحرانه از شبکه های کامپیوتری (و خصوصاً اینترنت) لزوم برقراری امنیت و امکان تشخیص نفوذهای اخلال گرانه در آن بیش از گذشته مورد توجه قرار گرفته است. در همین راستا، رویکرد نظارت بر شبکه های کامپیوتری با استفاده از کنترل زمان حقیقی ترافیک در انواع مختلفی از سیستم های تشخیص نفوذ مبتنی بر شبکه و میزبان، ارزیابی و پیاده سازی می شود. این سیستم ها عموماً از تکنیکهای تطابق الگوها یا نشانه ها به عنوان هسته اولیه ساختار خود استفاده می کنند وبنابراین در شناسایی حملات ناشناخته ای که تاکنون الگویی برای تشخیص آنها وجود نداشته، عملکرد کارا و موثری ندارند.
در این پژوهش، ابتدا کارایی توابع ویولت نسل اول و دوم در سیستم تشخیص مبتنی بر تحلیل ویژگی ها و با استفاده از مجموعه داده DARPA1999 [6]، بررسی شده و در ادامه رویکرد دیگری از این سیستم ها با استفاده از شبکه های عصبی، مورد ارزیابی قرار می گیرد. در این راستا، از تکنیک آنالیز مولفه های اصلی[1] جهت کاهش ابعاد ویژگی ها استفاده شده است. مجموعه داده مورد استفاده در این سیستم تشخیص، KDD 99[4] بوده که مجموعه ای از اتصالات است که هر یک در قالب 41 ویژگی توصیف شده اند. مجموعه داده ی آموزش این سیستم شامل 22 نوع حمله می باشد که نوع آنها برچسب گذاری شده است. پس از اعمال PCA ، یک شبکه عصبی پرسپترون چندلایه ای[2] براساس مجموعه ای از 45هزار اتصال آموزش داده می شود و سپس هر بار سه هزار اتصال بصورت تصادفی انتخاب شده و آزمایش می شود. نتایج حاصل از پیاده سازی نشان می دهد که استفاده از توابع ویولت نسل دوم در توسعه ی روشهای مشابه که پیشتر با استفاده از ویولت های نسل اول پیاده سازی شده بودند، تاثیر چشمگیری در بهبود عملکرد سیستم های تشخیص نفوذ نداشته اند. گرچه این دسته توابع را می توان به عنوان ابزاری برای پردازش داده ها جهت دستیابی به یک مدل مطلوب تر از داده های ورودی مورد توجه قرار داد. از سوی دیگر، ارزیابی روش مبتنی بر شبکه عصبی و PCA حاکی از عملکرد بسیار مطلوب این ساختار در سیستم های تشخیص نفوذ می باشد.
کلمات کلیدی: سیستم تشخیص نفوذ، تبدیل ویولت، ویولت های نسل دوم، شبکه عصبی